Loading...
HomeMy WebLinkAboutEngineering Report WHITMAN Creating Solutions. Exceeding Expectations. SOUTHOLD LANDFILL ENGINEERING REPORT FOR TOWN OF SOUTHOLD, SUFFOLK COUNTY, NEW YORK PREPARED FOR TOWN OF SOUTHOLD PREPARED BY WHITMAN 7 PLEASANT HILL ROAD CRANBURY, NJ 08512 JUNE 2015 REVISED SEPTEMBER 2015 WxiTMAN PROJECT#140615T 7 Pleasant Hill Road, Cranbury, NJ 08512 www.whitmanco.com GIPROJECTS12014114-06-15T Sun Edison Southhold IandfilPttandfill Closure ReportsRSouthold Landfill Engineering Report-FINALdoc SOUTHOLD LANDFILL ENGINERRING REPORT FOR THE TOWN OF SOUTHOLD, SUFFOLK COUNTY,NEW YORK Table of Contents 1.0 INTRODUCTION 1 1.1 Site Description and History 1 1.2 Landfill Closure Design 1 1.3 Purpose and Scope 3 2.0 SOLAR FARM 3 2.1 Methane Hazards 4 2.2 Additional Load 5 2.3 Potential Settlements 5 2.4 Wind Uplift 6 2.5 Liner Penetration 6 2.6 Side Slope Stability 6 2.7 Stormwater Collection System 7 2.8 Gas Collection System 7 2.9 Equipment Use on the Landfill 7 FIGURES 1. Site Location Map 2. Site Layout Plan 3. Existing Recharge Basins 4. Road Crossing ATTACHMENTS 1. Calculations in Support of Section 1.2 2. Calculations in Support of Section 2.6 3. RBI Solar Uplift Calculations and Design Drawings 4. Equipment Tire Loads N.A. WHITMAN MAN G\PROJECTS12014114.06-15T Sun Edison Southhold Landfill\Landfill Closure Reports\Southold Landfill Engineering Report-FINALdac SOUTHOLD LANDFILL ENGINERRING REPORT FOR THE TOWN OF SOUTHOLD, SUFFOLK COUNTY,NEW YORK 1.0 INTRODUCTION In accordance with Title 6 New York Codes, Rules and Regulations (6 NYCRR) Part 360- 2.15, Landfill Closure and Post Closure Criteria, this Engineering Report has been prepared to describe the proposed modifications to the closed Southold Landfill, Cutchogue,New York. 1.1 Site Description and History The Southold Landfill is an inactive municipal landfill located between Oregon Road and North Road (also known as Middle Road and County Road 48) to the north and south, respectively, and Cox Lane and Depot Lane to the east and west, respectively, Suffolk County, New York (see Figure 2). The landfill is situated in a rural, agricultural area of Cutchogue, approximately 2.5 miles east of Mattituck and 8 miles west of the Incorporated Village of Greenport. The landfill property is approximately 62 acres, including the 17 acres north of the landfill which was formerly used for township operations and 11 acres south of the landfill currently used as a waste collection and recycling center and transfer facility. The area formerly used for landfilling, including two former scavenger waste lagoons located in the western portion of the landfill, comprises 34 acres. The Town of Southold initiated operations at the landfill site in 1920 for the disposal of municipal solid waste, refuse, debris and scavenger (septic system) waste, and operated the landfill continuously until 1993,when it was closed. 1.2 Landfill Closure Design The current contour elevations and drainage characteristics of the closed Southold Landfill (see Figure 3) reflect the intent of the New York State Department of Environmental Conservation (NYSDEC) approved Final Closure Plan design and the results of construction activities for closure/capping of the landfill. For the purposes of the following discussion, and consistent with design of the subgrade grading plan, the landfill is divided into eastern and western sections, which are delineated by the main access road which runs in a north/south direction through the center of the landfill cap area. 1 WHITMAN G•1PROJERS\2014114-06•I5T Sun Edison Southhold landfilllLandfill Closure ReportslSouthold landfill Engineering Report-FINALdoc II • The final cover for the Southold Landfill was designed to: (1) support vegetation; (2) protect the hydraulic barrier layer (i.e., the geomembrane) from physical damage; (3) restrict precipitation from infiltrating the landfill waste mass; and (4) provide collection and passive venting of the landfill gases. The installed capping system consists of the following, from the surface downward: • Topsoil Layer: A 6-inch surface layer of un-compacted soil capable of supporting vegetation; • Barrier Protection Layer: A 12-inch layer of clean fill; • Geocomposite Drainage Layer: A fabricated composite consisting of a geosynthetic (polyethylene) drainage layer (geonet) core with a nonwoven geotextile (8 oz./sq. yd., polyethylene) permanently bonded to each side of the geosynthetic drainage layer, which was installed in all drainage swales and over areas with slopes of 20 percent or greater; • Geomembrane Cap: A high-density textured 60-mil flexible polyethylene (HDPE) geosynthetic liner; • Gas Venting Layer: A 12-inch layer of sand with a minimum coefficient of permeability of 1 x 10"3 cm/sec. Passive gas vents are placed within the sand to collect gas from this layer and vent the gases to the atmosphere; and • Prepared Subgrade: The prepared subgrade surface serves as the graded and compacted surface upon which the veneered layers of the capping system are sequentially constructed. The prepared subgrade surface was achieved through a combination of activities which included: excavation of waste in areas of cut, re- landfilling of excavated waste in areas of fill, and placement of contour grading material (general fill) to achieve the proposed subgrade contours. The subgrade was completed within a 6-inch layer of soil. Because the final subgrade layer and gas venting layer comprised the same material, no geotextile was used between these two layers. The above-described capping system was constructed over the entire landfill waste mass. The landfill cap as designed and constructed is sufficient to support the planned solar system. The load calculations are used to determine the capacity are attached to this report. Based on the load provided by RBI, the worst case scenario has the solar rack load at 300.5 lbs/sf. The cap is constructed of approximately 2.5 feet of compacted silty sand with up to 10 feet of compacted fill. 2 WHITMAN GIPROJECTS12014114-06-15T Sun Edison Southhold LandEIlllandfill Closure Reports\Southold Landfill Engineering Report-FINALdoc The footing load decreases with the depth of the bearing strata. Using the footing width of 3.66 ft (width of ballast rack) the pressure of the foundation on the soil diminishes to approximately 156 lbs/sf at a depth of 4 feet and to approximately 91 lbs/sf at a depth of 8 ft. Calculating the allowable bearing capacity of the cover soil and cap using the Terzaghi equation, results in an ultimate bearing capacity of approximately 5032.5 lbs/sf and applying a factor of safety of 2.5 results in an allowable bearing capacity of 2013 lbs/sf. Calculations are included in the attachments 1.3 Purpose and Scope The purpose of the Southold Landfill Engineering Report is to provide information to the New York State Department of Environmental Conservation (NYSDEC) and documentation on the proposed solar farm at the Southold Landfill site. The installation of the solar farm will allow for a site that is currently undeveloped to become a more productive site, producing up to 1.1408 MW DC of power. This power will be sufficient to supply the landfill needs, as well as providing for revenue from the sale of excess power, to offset the maintenance cost of the landfill. All work associated with the installation of the solar panels will be conducted consistent with the revised Southold Landfill Post Closure Plan. 2.0 SOLAR FARM The proposed solar farm will consist of 3,456 ballast mounted solar modules and associated electrical equipment, such as solar inverter, disconnects switches and transformers. The project is currently in final design stages and actual equipment specifications may vary slightly. The concept for the installation of the project is as follows. • Solar modules will be attached to a manufactured aluminum racking solution, which will be supported by 339 concrete ballast blocks. Each block will be 9' 6" x 3' 8" x 2' 0"and weigh 10,450 lbs. The concrete blocks will be placed on approximately 6" of gravel on top of the landfill barrier cap. The design drawings as prepared by RBI Solar, dated July 14, 2015 are attached with layout and design specifications. • The proposed solar arrays vary in overall size, but are approximately 600' x 175' in area. The design of the racking is a 2 module high in portrait orientation that is approximately 12'-4" in length, x the length of each row. The modules are tilted at a 20 degree pitch form horizontal, which should have minimal impact on the vegetative 3 p` 7 WHITMAN G\PROJECTS\2014\14-06-15T Sun Edison Southhald landfill\Landfill Closure Reports\Southold Landfill Engineering Report-FINALdoc I layer. In our experience if properly seeded and maintained any disturbed areas will sustain growth below to modules. As part of the agreement Sun Edison is required to maintain the site and vegetative growth. • The associated electrical equipment will be installed on a concrete slab of varying thickness, generally 10" or greater. The slabs will be placed on approximately 6" of Ii gravel on top of the landfill barrier cap. • Electrical wires from the solar modules will run along the module support frames to a Icollection point (combiner box), which will be supported on a ballasted frame throughout the solar array. There will be approximately 12 combiner boxes. The wires between the combiner boxes and inverter will be run in aluminum cable trays supported above the ground by manufactured rubber sleepers, as well as concrete sleepers. The wires from the inverter/transformer to the point of interconnection will be run both on the landfill cap area as well as off. The section on the landfill will be run similarly in a cable tray system to a point off the cap area and be transitioned to either underground or overhead wiring. • The proposed solar equipment, in particular the inverter, will be installed on a cast in I place concrete slab with an overall size of 12'-9" w x 30'-9"1 x 12" thick. The gravel proposed is specified to be a minimum of 1-1/2" dense graded aggregate (QP- quarry process) stone. D • The proposed electrical conduit will run above grade to avoid disturbance of the cap material. The proposed design calls for the conduits to be placed on industry standard recycled rubber supports similar to Eaton DURA-BLOK product (http://www.cooperindustries.com/content/public/en/b-line/brands/Dura-Blok.html), spacing and sizing of actual block to be finalized during final construction drawing preparation. A layer of gravel is proposed to be placed on grade on and geotextile weed block along the route of the conduits, to provide both a leveling surface, as well as a means to block weed growth between the conduits. • The reaming areas of the array, around and under the arrays will be maintained with normal grass mowing operations, performed by Sun Edison's operation and maintenance sub-contractors. I • No roads are proposed for this installation. 2.1 Methane Hazards Methane is a naturally occurring gas associated with the degradation of organic material. The release of methane during the construction process is not anticipated to be a hazard, 4 Y ® WHITMAN G\PROJECSS12014114.06-15T Sun Edison Southhold Landfill\Landfill Closure ReportsSSouthold Landfill Engineenng Report-FINALdoc however, during construction; air monitoring will be completed daily for the duration of the installation. Due to the potential presence of methane in the subsurface, and the potential of accumulation in the subsurface, all electrical components that are not part of the solar panels, or associated wiring will either be explosive proof, or maintained outside the physical extent of the landfill. This does not include any connectors between the panels, as there is no enclosure to JJ accumulate the methane gas. Monitoring for the methane will be conducted as described in the Southold Landfill Post Closure Plan. 2.2 Additional Load The addition of the solar panels on the site will have minimal impact to the load on the landfill. The existing conditions are sufficient to support the proposed load of the solar panels and associated equipment. The landfill cap as designed and constructed is sufficient to support the planned solar system. The load calculations are used to determine the capacity are attached to this report. Based on the load provided by RBI, the worst case scenario has the solar rack load at 300.5 lbs/sf. The cap is constructed of approximately 2.5 feet of compacted silty sand with up to 10 feet of compacted fill. The footing load decreases with the depth of the bearing strata. Using the footing width of 3.66 ft (width of ballast rack) the pressure of the foundation on the soil diminishes to approximately 156 lbs/sf at a depth of 4 feet and to approximately 91 lbs/sf at a depth of 8 ft. ICalculating the allowable bearing capacity of the cover soil and cap using the Terzaghi equation, results in an ultimate bearing capacity of approximately 5032.5 lbs/sf and applying a factor of safety of 2.5 results in an allowable bearing capacity of 2013 lbs/sf. Calculations are included in the attachments 2.3 Potential Settlements As per the settlement analysis submitted with the Final Closure Plan prepared by Dvirka and Bartilucci, and Tectonic Engineering, the primary settlement occurs within the first year that the cap and fill are placed, and the secondary settlement will occur between years 1 and 50. The site has been capped for over 10 years, so the primary settlement has occurred and the landfill is 5 `Y WHITMAN G 1PROJECGS2O14\I4-O6-IST Sun Edison Southhold Landfill\LandfiH Closure Reporn\Southold Landfill Engmeenng Report-EINALdoc approximately 20% through the secondary settlement phase. The Final Closure Plan presented settlement data for various landfill material thickness and various fill thickness with the cap. As per the report, the worst case (40 feet of landfill material with 10 feet of fill) for secondary settlement will be 2.72 feet. Thus it can be inferred that the landfill still has the potential to settle approximately 2.2 additional feet in certain areas. Under this assumption the 10 feet of fill material along with the 2.5 feet of cap material will impart a surcharge of approximately 1400 lbs/sf on the landfill material. As calculated above, the ballast rack will add an additional 300 lbs/sf. However, in this scenario, the stresses in the soil from the ballast rack will diminish with depth and be negligible at approximately 8-10 feet below grade. The topographic survey shows a fairly uniform slope over the central part of the landfill suggesting that localized settlements have not occurred within the capped area. Regardless of the new loading, there will continue to be secondary settlement of the land fill and a maintenance plan to inspect the solar facility for settlements and repairs will be required. 2.4 Wind Uplift The solar array was designed based on the IBC 2009/2010 Building Code of New York I State. Please refer to reference on RBI design drawings attached. 2.5 Liner Penetration All components associated with the solar panels are at or above grade and no liner penetrations are planned. 2.6 Side Slope Stability The landfill is relatively flat and there are no slopes in excess of 20 percent associated with the landfill,therefore; side slope stability is not an issue. By applying existing data from the Final Closure Plan prepared by Dvirka and Bartilucci, and Tectonic Engineering, along with several assumptions based on published literature, we were able to apply the Koerner and Hwu(1991)method to calculate the factor of safety against sliding of the cover soil. Our calculations resulted in a factor of safety of 1.94, which is consistent the factor of safety presented in the Final Closure Plan. By adding the additional 300 lbs/sf surcharge imparted by the proposed solar ballast, the calculated factor of safety drops to 1.92, which is still well within the acceptable limits. 6 7-0 IN WHITMAN G\PROJECFS\2014\14.06-15T Sun Edison Southhold Landfill\Landfill Closure Reports\Sauthold Landfill Engineering Report-FINALdoc 2.7 Stormwater Collection System The current stormwater system was designed to control and convey storm water runoff for the 100-year, 24-hour storm. The groundwater recharge basin system has also been designed for the 100-year, 24-hour storm. The drainage swales will be maintained as grassed channels. Complete vegetative coverage will be maintained and will be inspected at the same time the landfill cap is inspected. Areas of erosion will be noted and repaired as soon as possible to maintain the integrity of the cap. Due to the addition of the solar panels to the landfill, the site will be inspected after each 3 year or larger rain events or at a minimum on a monthly basis for damage to the cap or the solar panels for the first three years. After the initial timeframe, if no unusual erosion is found, inspections will return to the schedule in the Post Closure Plan. These inspections will be to evaluate the effectiveness of the stormwater system. The design of the solar farm is not anticipated to impact the function of the existing stormwater collection system. 2.8 Gas Collection System The current gas collection system is sufficient to handle the gases generated at the site. The current gas collection system will not be impacted by the installation of the solar panels, and will be maintained in its current condition. The location of the gas vent pipes was considered in the design of the solar array. The module racks were placed so that a minimum of 3' was maintained around the well. None of the I solar array racks were placed over a gas vent. There are 3 vents pipes located within the i_ , northern most array as well as 3 within the southern array. The solar array racks are located so that all vent pipes are located in row, in between, each module rack row. Refer to both the construction drawings as well as the RBI drawings for reference to locations of the vent pipes. 2.9 Equipment Use on the Landfill The installation of the solar panels and the associated equipment will be completed through the use of equipment no larger than a pickup truck on the landfill. When possible, the equipment will be operated on the existing access road. If the equipment is required to be operated off the access road, the design of the landfill is sufficient to provide structural support for the weight of the truck and equipment on a temporary basis. If there is any damage to the cap during -the 7 vt-N: WHITMAN G\PROJECTS12014114-06-15T Sun Edison Southhold Landfillllandfill Closure RepartslSouthold Landfill Engineenng Report-FINALdoc temporary mobilization off the access road, the cap will be repaired in accordance with the Post Closure Plan. 8 W WHITMAN G:\PROJEQS\2014\I4-06-IST Sun Edison Southhold LandfilllLandGll Closure Reports15outhold Landfill Engineering Report-fINALdoc FIGURES VOT WHITMAN { ` '. 7 - _ Y y ,. � _:te ..,,,-"::4--r:?C':;%-if---- k9)--.4.''.k.-:-. ...'. ''''''''s . , - . Duck Pond: � Point::? :: r - , ,- bo-- �. �' o• --/ ./ kms•, ,� -_. r r 65. \'QQ y< .))-4r- ,.,_-_-,• �� �h •i \ .5y.,4 I P 0 \ .- ..f "/ 1:i' : S‘,__, : r'''''' I :17 \i_. ,- - _ , 1 Air..,...,:::-;1::ot%.,.v.......:.6.-: �\\)::-2 ;� SITE w, �# 'S_ �; ---111,--:1 ),, 44414% ,sitt-4 .,,,,, ,...__..,:.;:.,.. ,..-.. ./. -- _ ,.i,„, -\At.,, \ Ilk, , ' ,tr -.. _. :. ,....". '-N,, ',.: \ ."%idtjt si ; . '-, '. % -...1- - .. `\ x(57 J ;. ,\\ 4 •4 /•• N. _ '. - / \<L ^� . - i \4‘... moo ' ' <;: � 1 S . , ' ;, X . ( • cs) i /l• ( 15 -; \�',��^Iii •,_ .1 \'4t:\\ .� * _•4Z SCALE 1:24000 I 1/2 0 1 MILE 1 i 1000 0 1000 2000 3000 4000 5000 6000 7000 FEET .5 .25 0 .5 KILOMETER MN GN 6155 COX LANE voE"4 W SOUTHOLD, SUFFOLK COUNTY, NY 'S 231 MILS 1.51. SITE LOCATION ON USGS MIS `'1THITMAN SOUTHOLD & MATTITUCK HILLS, N.Y, QUADRANGLES I: ORIGINAL BY: DRAWN BY: 1 DRAWING NO: UTM GRID AND 1981 MAGNETIC NORTH GSB GSB 14-06-15T DECUNATION AT CENTER OF SHEET QUADRANGLE LOCADON CHECKED BY: DATE: FIGURE NO: AE MARCH 2015 1 Z:\WHITMAN\2014\14-06-15T Sun Edison Southold Landfill\Environmental\140615 - Fig 1 - USGS.dwg o+ '(// - -7. \\\`�,\V'/47 � (IJ 1 I ` \ ((if ;, \�_`� ) I\ I ` 1 /__z:}/ 611,1/, \:\-/.//_/--__"_ ,,y/ili,*/ i '/ J ' \ r.y__:_-______,--- ,lov.- - ... „„ . \.- �\l l \\, - /! + ,; �, ` , — '�j /---------_----:-_-i____------- __:>,), bli . \-- �� / / \\\ ' _---_,,,, A , , 1'---)-/: -- I;� goo \�\�/ s \ �!�`` i �..---__-7-- ---_------"—=---------------___- ------------'- ------- �J-) — I jc-_-___-_-_--_---=)-----__ --_- 6 --- ----.-----1 ---1_'P'‘_ .---- . -----, ''''' '"---...-. -----' -'-----% '___-'2-/--------- ---------------:-----:: ' k - 1 i' ‘ i_Err -C !''''. ----"- ' 1 /_— ----- :1-_- ------------------- „.----_,------,- ------- ----1; \. ( vt * 4I a 71- / \ i Ii l I l/; / /r \ �t VI _��— �—�� „o•;;c� ,,,.,•,♦i ,,,a 0` �,,d\•,!!�' \\ \ `l \\�` ! �1\\\\;' ,' -4, .„ 1 ik, 0 1 _ fl )1Hir I i 9f ' l— �_ �-� - __ _...__-__'-� `\\\Ott -- 031"t% \o\, 0��',\`JO`i,,,'\00‘t 0\ ♦\\,p,,J�,♦• ,\,,1�`0���� ,i1I,�0> \\ \\ \ \ \1"\� :. . 1 �: ..�Jr _ /-�` PROPOSED SOLAR ARRAY(TYP) \�!♦`)♦, \p��\ -\gi ,�♦ , \♦♦�• ��� ,\ J♦ \O,l�.i \.\��1, ..,ll_law „v.) ( . , / �J�� - " ,\y\O,,c,� ,O\l,�,c,♦ ,•\lp t ,,\` ? \♦\O!J♦ ,♦\O�♦S ;,;,0 )\ \ \ ', EwSnNG A0. „ __ 1„0 _____J , i // ° `r. LIMIT OF PROPOSED WORK/ ,,P\O�OcA ,!����♦moi, ,♦♦,1♦♦,, \O;l�\,, �♦♦♦♦♦` \J♦,O\\,, \\J,♦!�\,, /�♦!��\!, ♦♦�� ° /� 6"x DISTURBED AREA \,♦ `♦ \44% ♦♦ ♦ ♦ \ ♦ 04%, ♦ ♦ ♦ ♦ ♦ \♦ \ 4\ \I I C_ �\ �// \‘\‘,9).,:;04.‘” ♦♦a♦�\\♦, \♦l�,,J�OJ♦���1, ,!`\•,�!`� .Op`ip, ,0�;♦'<� ,,u�,♦• / ((! 1 \ «.,i (\J\ \ , ) , ♦ 111..4%•'''''''..,v,O �\ /. ♦% EXISTING SWALE AND DRAINAGE / \ i ` \ I ° PROPOSED WORK - \O�♦,!\' ,C/,,P:O♦ :,!♦ \p?♦♦!• / /II \ \ \ \ \ , -AC. .,T T1P) \00♦�!�\,--0♦%Z4, !`,!♦!�' !..0. !�oZ. \\p♦l,�q,♦ ___,A PATTERN NOT TO BE DISTURBED(TYP) _,.--1,_, ,%�- /i// it 1 ` TING SWALE -" li'-\ \\ 1 4 1 \\ \ \ \ N /\,,,`\a `,`,,, �('� / -- -'' --- / / 1 7/\ 1 1 \`\'Ey(� \" EXISTING SWALE C ------ -_� ` ,o. ..\,, \ ��\J\ .\.,:`, \� 1 {` �I _�� IE' \ \TIN 1MYT-0\�1-`\ �`,-., - � �- ',,0*.\• %,%%%,,`--t; ��i ]♦1\\; •1Z%0��, - \Z/�� \ \ 1 I iv.) \ / r(---__„-___T 1 ‘ - ,,, _ ________. o I^ \ ( -\`, fr\ J__�- /I/7 —, .x i r ^�] ,O,\`�♦�`',! po`���\,,`' ���\`\i���`\,,, ,, �;c',, \�,�\-.♦� O,O�\ O,\=i, \,p\j0�1t ;!,\)!�, ``,'O,e, I I II�1;1` xl /),)1- ---\- \\,_) \ �_ ( ! 00�,/, ♦♦ p\\`♦` \ 0♦ ♦6 v ,, ,,!• UMIT OF PROPOSED WORK/ ,D\♦ ,,!!`,! 'O\\♦,,. \`,0\\\ 1 1! I I / �...+"'"r -----i- ♦♦0) %Q !� O ,� ♦\\.O \41\e' \S♦� DISTURBED AREA \'‘, \` ♦� \ ♦i\.,� r- t` Irt �'� ----- \\__ (/ / C -,---------- --- --‘ ;‘%%s'i c\ , J)`,° 'S\• 111\♦�,�Y,, ! %�`' %*Si \ !\`��S% �\,S,` ♦`i%,,\ \�\�,♦, 0S%� .' ,%*%\'' ' fill ((( I ��`.lii— (i1� \�\ !STING UMIT OF WASTE / I \ - — ♦ ♦ ♦ \. ,\ ♦ ♦ ♦ ♦ ,♦ �! •%%‘\''%%% ♦\♦ \♦, , ,,\\�♦ �\��,, �OJ ) t li i • ," (I I \� � \ ��- • `'i��!`" ♦\``�♦ - lay, 0"„•\,;\♦J 31‘)::010/Z• °4- , )♦ ,, ;1`, cool)%1♦ , p. i I 0 1 I II �\ ' \ � / �_ ♦ ,♦,!, ,\i♦, ,\\`j♦` \\,,`! \`,``!� o��`, ,\\�,�`'', /\;,�'-� !.♦` moo,\ ' ♦ '>, I �l x tl I � \`` \ � � \ � --�--\ _\\°il,',\o\zO�`\!,,` ,\00�♦♦`,r`` ♦,���,\',.,\!♦♦�,,,`', \�♦♦��,/,.', \a��',,`',N\\+,�,,`,`!\".O♦,„J,\\�,,�\\,♦,\)♦,,\\",,,v.0�1c I '' _-- t, ( 1 A/ V 'It - `,.\\,k- ,,,______ -----„,_____ _ \,;0"----:\ \t'' _,--\ _-_-_—_- t'_____• —L----= '"s • -\-• — /I) ry iti — --- 1--- — 077=----_ ___--_:_ ------ -----"..,—!::_ _,// / i I ill i ' 1 , AN ,i, \\ \,,____,---,________,_ -_____4—___,_________----- , , _. ______w _____„,,,_ ______---„ , i , (.),,, , ___ s. __ ____,, . , ,,..,..._______ y ,,, ,, - \-.:- --,___:—_r_., ---=ft....,-,_„="11%, ,__ ________ ,,.....„ ____ , _ .,.., _ ___\_,-_-. ,::_ . ._ ,,, ,,, / ilA , ..._________,__,____ ________ „, ______,__,_-_-:-_-- _, .-,-,-___ - __L-__:-_-=_-_- - __,- _-. .__:: 3--—7 , �� /! ---------- � - _.- -- ‘.--.7---;---,--7---E - -- f + �. Illiillilmillim -_i^ •- -- •.-- --_____,-- -- --� EXINC SWAL I ' � x = -- - OL I //////--/;,- J^ --- �� z `� — `�_ :— J�, ---7:-.0111 • /,,,,,,V,7--- S CALE �� _ -,-;"'-e2 -%i' 0 100' 111 a ---- ----1 � r, �I ---- ti�f 1 STHOLDLDLL �� (\ 1)� ��``� v(LI xn.,nci -':,,� 1 %S5 SUFFOLK COUNTY, NEW YORK WHITMAN ' SITE LAYOUT PLAN REFERENCE PROJECT MANAGER DRAWN BY PROJECT NO GENERAL LAYOUT PLAN TAKEN FROM PLANS ENTITLED "SOUTHOLD LANDFILL SOLAR ENERGY C.R. P E 14-06-15T PRODUCTION SITE, COX LANE, SOUTHOLD, NEW YORK” BY GREENMAN PEDERSEN INC DATED 4/24/2015 CHECKED BY DATE FIGURE NO C.R. MAY 2015 2 Z:\WHITMAN\2014\14-06-15T Sun Edison Southold Landfill\Environmental\140615- Fig 2 - Site Layout Plan.dwg I s t 'T-4,:4-'-'-'7:-,--=, --- r'�-.",s:__ _•_= ;;< -'�,=`s=ue;;-_ 'E' 7 - -_ . . ;�. I \ \\c . te- _ ;> ,r l f N r~^ - - tI '.--:`,"-i' _ ,- \ a. i{ �!"'i.soy Is"t it°�r�fe°r' r '4t-.:Z.';;',. I NEailxoE BASm Now VIII '' f <.l'. c/ _+.s '� 'cu �q Rr.,,,A,E RAgN NO.J ri I`1 is ;n i C n C -r' cc° :�.., ' t '�L,"�. e C� °r] l '.w _ ', I it t1 4t,.1 :re. s d 'SCR Z 4;t1vr w ,: irAItt 1AL�,. �'JI \ - f ., ' r!n 1L i{I+t r v Pf x rrr °ti°i.4:.R.3, ' Rfr.0.-,, -fi c L e`. �*-R-+ ! ... \ L a£! �N t LL Lr n+¢ SEs.-•e3'A e±" r , i ` E {i }5 i I°L rr J £>r y r.y... Etv. °Z'aL;AP'e�".�. ,A.&.�[.C{�'aE-"ia.- -.—ill r r , -_� - \ .'"411'1'4' Y,. J£ .i ( i! �C y.y/.' �i• 5 rE ,i.�,:°�"ti :��� v i£1GcR.�•. �-�• —'�" •.�"r..'Oda ( {iai"s a ii 9r h i a o"'+PP PX'•••:r•L • oma. a ' -,.. M a�L' .'r,a t rnl''' tN. I , , / r n r,•R Y �i'1!r)' t �'] �) K .o+s rcrc"'I'-i-� cI' ��1c .�•, I- ! ,P i i 7 u 1 ro i _ y c yam, .4.1 S:' 'T,'iir c:g44 ~• t �� 'e1 ,;iF ,�I k f .ems. R oa na. a v� 1 1i f,I u I!9 .,. Rr�L+y -R�� �.•w'ra�Ri 1,r ••••••••=,4....,,,- ,,,,.__ „ . � RI'•'tit. e' aRry�.`"�� xc°Rx.<G.�'="rn�ata•~°wZ�9f1��1`1�" , /,., ti1iiS�I {'d"I '° 13.{i�t'_, v..r'ro-� 't»s ..d s>r a.r 1 F'tfs ru .-f { 2.L 4,,.. .� ' °Ri`Ar t:,'o"�"mr-J°rzia°Rl �+-.-° \. -a `Ri r °°P,...�,.._sy'..Z i ---------71' ,� '✓ ,,,, f i f 1 M- f, C !... . °Sit 'rr 'Q 3-5 [Ye R\I{ i - _- - - \ _�•�,� !}yd::,n°n�,r ra Q} Ca (.i �'n'Ra'a`s�'-`tE s„H y `�-'t9 ec� ..;a°Loawa�it� ��. M� 1 {iee a rf 'dit{Jf ii -4,i' , II ■ Eancae':'�ai: .r a s"°a a tRarys „`E`r °t,�j.r'ts ni p'�° ' -';/ ''1,4'.!r-,.:*:',-..,,, <,e j,.'s f r)ifl� i{ , i i g'''RIt'.,4"4:11,: lieu iYE° :1?; 4_ Pt 1g L I. ,,ty r 7,i°,''x.,'\ F I��(trfv k�is J04'41i:41 fr j I ,p �•Lzc. rc� ea- .,q `r. !�iilrlr / - 1 -4,..,,e:,-„...,., ,' I f fF ," 7 s I Law,-®' Ri•.. c111111,.1,:,::','''.',, t a\t ��n e - \ ...n S!',-,,...t.' /�i� }, n,+r,f , /'i �X; • `t`. WASTE m SE MOVED 4..+,i' i'7��.fu,r �'N/! x.) f n'.'P \ w - \ A\ AND REPVLEO NIIM _ _\• .',.Yip } `rio ,).i..J S{";iri 'I / ' - `C CLEAN�R , 1. .\..! '` >----- �� �a r tiGr'£ '^j,+i �!t^I I� D�( f - 'V . -/ R ,' _�f' , I-S{ , ...„- ......-.1,-,.... . { „,.,,,i,,,,..,,,,,....,:, 1-!,tATaii r, ° ) L 3..111,.,A.,.,,..,...,.0.,,!.....0., !i r II - 1lir ” / \ ; PROPOSED CABLE TRENCH THRU PROPOSED CABLE TRAY ROAD,TO BE OLDCASTLE ON SUPPORTS(TYP.) PLASTIBETON CABLE TRENCH(PBCS) OR APPROVED EQUAL io .: , `-'..,.or.. =:-4, EA = _ -. . .� irtf.. Y =, YY . .tt .�.I.......... . GROYTHMED /UM II' " i" !EGETTl/E - TnPPROTECT/ONLAY E R I - -n-i � � I =ila-n 1 I GEOCOMPOS/TE ORA/NAGELAYER 1 • -..\ 60M/L HOPE TEXTURED E I 1 ////////// /e(/////////////c/ /////ice//�//////6/�/ ,///////�/, ////i�� GEOMEMBRANE 1 00000000000000000000000000000000000• •0000000( GASVENT/NG LAYER Zo0000000000000000000000000000000000000• • 00000( GEOTEXT/LE CONTOUR GR4D/NG SECTION VIEW A-A MATER/AL WASTE EX/ST/NG GRAVEL ROAD -n-1111II n-u-u-n-n-11-11-n-ull n I !,•':!;X� ==-)-=-)^r�-es)-!-!.,.-7, - J- -,� 1.�I 1-111 1 1I a ir—i�I ir—ir I°.Lir ir—li�I:=:�f.ii i .11-11=n-1L=11=g=liiL=iin-n .iL _ iF�7-1±-0..cy� .t � - `-a , .,, - - - - - - - - -- —-—= PROPOSED CABLE TRAY -ILn .n=nn=uunn1ln-g-iL-n-i5- ".,_ ;stA;` .-,,. ,9 ,.,, r -rn-n-irn-n-n-iL-iL-u-u-u-n-n-n-1 11=11.=II1=11=11=11.=11.=111r='ir 91 11 .11=1111-1- 'f --\ r '\/ ,t c`..- fy{c``'.nl1n'11-11=11 11#11=11:=11=Tr=111=11.,=11=�1=11 1 ON SUPPORTS -11=11II=.11=IL=-r4i L i#11.41-,1.=1111 i=;ir,1.=1•t yy 4• rt.4 _ (TYP.) 1111=1111=11=11=11IL-11-11-11-1111=II=11= `S ,.� i ,--'..5-5.1--- '' r f-Le- II—IIIIII11=11-11=1111=11=11=11—II—IIII —II�II�11=11=11=11.=11.=.11=11=11=11=11=11=11=1�4. -.<,-.---,.,,,-...,-._,- ��ya--7:71a.na' °�o-*s'L'.i.�..h=11=1_I=11=11=11=1_I=11=11=11=11=11=11�:II��If�I A A II=I 1-11 11=111111.-111L11,.1111=11=11.;r- = ` ;`u vel'.K.7,- t b. 11 11-1L-11 II 11-11=11 11=11=11 li 1�. 1 —rI I I I 1 I 1 1 - 1 1 n=1 1n-nu-e-ILg-e-u-u-8-n-8=r,ze .7 ,u Kr,ti ,� f� 1Y , n-n-n-n-n-8-8-8-e-8-itll lm:=g' VEGETAT/VE —1�—II=n=.11-11=11=111L11—IL11-11=u=u=1:;J - , r`,-.c-f;c,` .J_ C � - c y;�4,X=u=11-n=11=11-11=n=11=.11=u-11-11IIII-1 11=11=a=u=11=u=u=11=u=11=11=11=1t=a=11rr r 2,i 1.r 4-x4,-)15-- ,-,Stz u=11=u=1t=.0=.0=u=nu=a=u=1f=If=1� 1r GROWTHNED/UM =11.=11=11=11=11=11=11:-11=11.=11.=1L 11-11=11-1;,„-` � ,,,,-,-K � zc�„�-;•,--,s;,-7,-- ,0-=,1-U_- ; Y . _-11=11=11=�111ILIIII11111111111111�1111:111111='ll1=111 II II nll�I 11�I 11 II 1111 it 11 it 11 u fi.l�11 it n.1111111111111l I_I 1 i`=1173x7- .--_s-:„ , }. . ;-p"' S,c,-�=1i=n=�i=ual1 �1=11=�l=n=u=�i=__ -1 EXISTING GRAVEL 11 iIJ111=.1111111111111-..II.I.I111�1111-11.111111 X1.11�I1lt �-r= -.4-,...,--).--,--7-,.k. ,�",o,<6 ' ,, ;- `"~ 4t,,I=i1111111111111.�1.11.�111 X111 I�11 FIJI 1111111L11 FIJI X1.11 .I -<. y.--_ ",�N7t. ,- , , ROAD PROPOSED CABLE TRENCH THRU PLAN VIEW ROAD,TO BE OLDCASTLE PLASTIBETON CABLE TRENCH(PBCS) OR APPROVED EQUAL 6155 COX LANE W SOUTHOLD, SUFFOLK COUNTY,NEW YORK WHITMAN ROAD CROSSING PROJECT MANAGER DRAWN BY PROJECT NO CR PE 14-06-15T SCALE DATE FIGURE NO N.T.S. MAY 2015 4 Z\WHITMAN\2014\14-06-15T Sun Edison Southold Landfill\Environmental\140615-Fig 4-Road Cross Section dwg ATTACHMENT 1 CALCULATIONS IN SUPPORT OF SECTION 1.2 A WHITMAN 19554-7 csGL tyJccTLv_✓s .-- Q..v= c Vic. ( 32 o = S.11-Ffi C ice", I �Ai y- ito I 6)F;3 _ t2,��� Gr c),4-s�;t C)10'9,-r3) (3.4 Fr) 512, 3 -5c, IL/Fri l otpoly -e '(I ® 2v13 ��� r-Tz is �` 1b�`i ,i�p�s �' feAt e-5(k0,s(� _ 2k o� �� r t arlc4f 3.6C rT FP 6 6_ S S5 Dir Ei 2" 2 Otpg4 osr 5 5 10�nT �55�y"e. gFr (2-5-[=j-c,,,t) AT sin s+ ) a� , • �. �- - 2 Cid q.37 i 4- ;d I Fri s ske. s L� /$e„ Lfs-A ktti 379 . 1 2 teea9his Ultimate Bearing Capacity Equation i + 1 + q[tan 0 ' K,,1 L'[tan �-_ -� q., 1 II . • (10 5) 13--Li- tan d)(Ky • tan 0 — 11 '; III `ii a . and III in Eq. (10 5) arc, respectivcl`• the contributions o itrib utions of � Che terms I, II, weight of soil to the '•, 6.w..-0,1 Y and the unit For { r t,e, and Ky. '� � '- �� :oheslon,Itsurextremely ` capacity. is extremely tedious to evaluate the values of h('T given below '�' err..it , • - ; Terz•i ,hi used an approximate method to determine the ultimate that mason, city, q of this approximation f, :;:7:1'1-,:,,'':,-.44,. , y bearnig capacity, q..• The principle ��� � ,; .. ` q), then from Eq. (10 51 x ` = 0 (that 1s, D(_ Y ,, , I. If c = 0 and surcharge q • ,4,0 1 13 1 tan 0,(Ky • tan do — 1)1 ,* ; Ny (10.6) .r 1 — 2ByNy 0, then from Eq. (10 5) . .• •� .,.,`*�, 2. If y = 0 (that is, weightless soil) and q = �, `M1'` ' ; 1 q, — qc = c[tan 0(K, + 1)) N (107) = CNc T 3. If y = 0 (weightless soil) and c = 0 4'\ �� q,. = 4q = q(tan •-; Nq (10.8) ,Fc J ` w qNq .�, of superimposition, when the effects of unit weight of soil, By method cohesion, and surcharge are taken into consideration, , 1 (10.9) qU = + cNc + qNq + 2-yBNy q� + qq qy , hi's bearing capacity equation The Eq. (10,9) is referred to as Terzag factors. The values of ;, ` , �' terms N�> Nq> and Ny are called the bearing capacity lOt7. . • capacity factors are given in Figurea ua :y these bearing P suggested the following q 41 For square and circular footings, Terzaghi • i_� "' tions for ultimate soil-bearing capacity: Square footing l (10.10) qu = 1.3cN, + qNq + 0.4yBNy ,� +«:r"' -, f,$1 ,4 '#'� :' `" �.' " I pr rAl'; qi -.,.r' da,+ �, ,^ -i•r -^,-,- „TN-;'rr";•'� :cr -•r•,- -r-.,;t.,.-;,,c--r.yzr•..-' ,,..-,, ...,.._ .,.-- -.. ......,.# i�' ...,i.:!:::-.A.... ._ti: ,. iK�` N-..3.�3,w t '� * t +«...`i '., - * -,..1,t-.44,-1,- o.,10-0w. . a'- I i s I i 380 Chapter 10 Sofl-Bearing Capacity for Shallow Foundations �le , ¶ I 1500 .1.. . fif` 1 800 / yL;; «• I1; 600 ` '' ' 500 ' , ,i 400 / �4 f '.i 300 A s �' .1' / ; I / #� i E 200 i * . lg� . l,14. ar t ,« / � ,T .1'sx 1 i It -100 , ': ,, i r 80 '� ;7.4,7. r W. o IEL,, 60 }i �� 50 / t4 1 , 40 e� �t�, ,N 30 1. t. / - 0 20 0 / , -,, i _ t V5. Y` / P t: ,:;:iii : , :,;; 6 a ,.„,v.. For$=0: a ' • 3 �% N t, — 2 / Nry .:?- , t 1 / 0 50 , , A� I 0 10 20 30 40 , .., ' Soil friction angle,**(deg) ? 1, Figure 10.7 Terzaghi's bearing capacity factors for general shear failure :yiI" i } � h X14.tii ' '` • 4 i,% , Circular footing A� t 1 q = 1.3cN, . � / - '. where B = diameter of the footing x yra i ti Eq. (10.9)was derived on the assumption that the bearing-cap ' ,` t of soil takes place by general shear failure. In the case of local slier ,,' may assume that1.: %� . Ys♦ .?..2':1,4 w:tk::44... lt,; ZN[Y�y - _I t ,•ry 1 ,,, II ' I • • • • ,-0,,hs d{0,j .,. -,,1a 157 •1; 1"' ,. ;;;1 Stress Due to a Ship Load .;I, 41' .-4,', 'fir: —l000 lb/ft q�=5001b/ft • `i ill ( ,''#'1,04".", 9z— II i ;) . ,. v . 5ftr .5ft► 11 �;. I 4. (a) hid _ 4 x.. . -i iii i'.�r .i �) 't 1b/ft 1000 lb/ft l ,ii ' • F''R . ► X r ► X2 `ieit �. Tn, .. 4ft'. ' 1 Oft i i' i''Z A iA ,j . 74. -;,ar- • ';_ii Id •4 10 ft--►� , I l'h .,i' - IS 5ft , 3i, MI s�+ (b) 1� L.` lure 6.9 (a)Two line loads on the ground surface;(b)use of �' .su ,4perposition principle to obtain stress at point A W:rt. It, M t, I` B ►{ �q=load/unit area ' '1, • • t, •.;. \ ' P \\\ \ I,`l ' - ' k•,. ''3.7,j1., N flt. ...... loe,..,- \ \ ,`Y •N'-r;.- `\• 'it At s +,vr° - x iii 'i ..1 . ,l. +. . gaw C !'M z 4T`: � `• strip ,r fi,, Figure 6.10 Vertical stress due to a flexible load i e L . CFS. L . n`m 1 . ii il .ii • Vit' tlfi), >.;;:' ', it r ,�, � 158 :..w .2: 1- 1 !, ,i I,' . Chapter 6 Stresses in aSoil t I Mass , 4'. I 5• i ' II .1',' tiLi' -:,,i "';bx �' �'`c - ' :U'�`� 6.5 Vertical Stress C }� ' ' ' The total increase ;'� ,I �' �; ' �I'r,Vii of vertical stress s ,,..,', z; 'l i , ; .'i' ,, width B can (gyp)at point A due to the entire * " , i I'EJ.��; II i be determined by integration of E ) strip load,�r Yat+; " under the load. 1 -B/ to +B/2. Or q• (6.16 withofr } ;:.9�'�;I 2limits r fro,; , `' stress increase. ;ti!, a; Op - fdp = 11f zs g,�: . ample i to 9i;' II J-B/z (s) dr '`^ • A f221 s5a; r .1�4 li - S 1 z ' 3 rf .�( 1� tan r1z 2 ::::1,Z, "- With referer ? �t� 1 ir f Lx - (B/2)] - tan- _ Bz[x - - B2/4] s ,.'f Determine the st � r,l{ i' f /2)]x + (B 2 2 � <<',a l 11,11!' { [x + z - (B2/4)] + B2 i, :. ',, , against x. ,Ir t { x 4 r ;} i I Equation (6.17) can be simplified: • ��f� 1 i = 4 r, ,rr" i ;L. Ap [R + sin (3 cos($ + 2S)] E , ffat III ( •18 • '• • 41 u� 11'10 The angles 1(i and 6 have de 1' , '. `2'='v� been fined 1, Table 6.2 shows in Figure 6.10. u I ' -f} f,7,,l ' 1.0 the variation of / with 11' i;�ri' tW �- a: i •I) , 1.5, 2.0, 2.5 and 3.0. This tablep 9 2z/B for 2x/B equal to 0 0.5 '` '. K" a--- t"`r� ' Canbeuse f' _' ' 1? vertical stress at a point due to a fle d conveniently for calculation of •xible stri e`,Ititt,11 11,11 i. given by Eq° (6.18 can P load. The net increase '''it ) also be used to calculate stressesgrid ash , „_�; i, },11 I,'11 p at variousx ,1!' ' grid pointsr ,sY ;';Aii t 'I Table 6.2 Variation of A p/q with �� ';-..3t1'-',"-*,'���' 0 1,1 d; 2x1B 2z/B lip/9 2x/B 2z/B _. ;lr '�;' p = 0.9 r p/9 7.i.,..- ..`^`' 9 i 0 piF ';'4,-;-V.` 'nyi 'LI. 1 1.0000 1 .�. , .; ;� 0.5 0.9594 5 1.0 0.2488 ; ;s'j .>- ;� 0.7 I 1 ,'#11! fl 1.0 0.8183 1.5 0.2704 ' .,;,4.4„. ii, i f� :l 1.5 0.6678 2.0 0.2876 .:WN'-'1-..-," 0.5 i g ` 2.0 0.5508 2.5 0.2851 < ,` i ? ' 1ili P1 2.5 p i!,:,,?.-,-,:,,,-?,':1,„',2 j',11'1'1'' 0.4617 2.0 0.25 7 �:,r ,!,...4,...-.,-14w.,.- ��EI , i i 3.0 .39 0.5 0.002 V';' .1gg i7 3.5 p 7 0.0 94 ; °nf; .; �,�i i�l 4.0 0.050 1.0 0.0776 A ,f., +sl II ., 1.5 0.1458 :, ti�=5F s 0.3 r}4 �' 0.5 0 2.0 0.1847 i„ jkY�' R Id1.0000{ pt `ptiB 25 0.9787 2.5 0.2045 E`' [; 0.5 •), �= 0.9028 2.5 , 1.0 0.7352 1.0 0.0 57N� ;t " s• OP Ilf 1.5 1.0 0.0357 - q.;r'.-'-;4` = 0.2 E 3 0.6078 i '0} 2.00.51071.5 0.0771 ,Gf -�`'' . I�, I�' 2.5 2.0 0.1139 ,•41 p{r `.^; r- 0.4372 2.5 p +r,, . i ' '� 1.0 .1409 r1':�i`7,-.•:,„,,, �zz,�-,"r; 1,c;1;1 0.50.4969 0.4996 3.0 0.5 0.0026 '. ''jl 1.0 0.4797 1.0 0.0171 .'•'1 ,:' t 1.5 1.5 0.0427 X34• .`; ?a.= < ��{ 0.4480 I' 1 { 2.0 p 2 0 0.0705 4095 '. y �.�,M1�I 2.5 p• 2.5 0.0952 � t;=-t�' i 3701 3.01' ' :; , '' x 5 0.1139 • ' h r- I j 0.250.0177 ,s _.,r=1 '�i` 0.5 '--;:4,:'„, ,, 0 i�, 0.0892 t" '`,i (Note iy„,, I *After Jorgenson, 1934 ,• z?f4 lij ] ;{?y�j, #, z'#= Flgure 6.11 Vertical t3 1� ' Zk::V; ATTACHMENT 2 CALCULATIONS IN SUPPORT OF SECTION 2.6 WHITMAN - Utilizing the Koerner and Hwu (1991) method to calculate the factor of safety against sliding results in a FS of 1.94, which is greater than 1 (ok). For the current conditions and the added 300 lbs/sf surcharge imposed by the solar racking, the FS is reduced to 1.92 (ok). ylk.V WHITMAN • The issue of appropriate normal stress is greatly decouples from the cover soil materials, producing a complicated if gas pressures are generated in the horizontal force which must be appropriately analyzed. A underlying waste. These gas pressures will counteract section will be devoted to the seismic aspects of cover soil some(or all) of the gravitational stress of the cover soil. slope analysis as well. The resulting shear strength,and subsequent stability,can All of the above actions are destabilizing forces tending to be significantly decreased. See Liu et al (1997) for cause slope instability. Fortunately, there are a number of insight into this possibility. actions that can be taken to increase the stability of slopes. • Shear rates necessary to attain drained conditions (if this Other than geometrically redesigning the slope with a is the desired situation) are extremely slow, requiring flatter slope angle or shorter slope length, a designer can long testing times. add soil mass at the toe of the slope thereby enhancing • Deformations necessary to attain residual strengths stability. Both toe berms and tapered soil covers are require large relative movement of the two respective available options and will be analyzed accordingly. halves of the shear box. So as not to travel over the edges Alternatively, the designer can always use geogrids or high of the opposing shear box sections, devices should have strength geotextiles within the cover soil acting as the lower shear box significantly longer than 300 mm. reinforcement materials. This technique is usually referred However, with a lower shear box longer than the upper to as veneer reinforcement. Cases of both intentional and traveling section, new surface is constantly being added nonintentional veneer reinforcement will be presented. to the shearing plane. This influence is not clear in the Thus it is seen that a number of strategies influence slope material's response or in the subsequent behavior. stability. Each will be described in the sections to follow. • The attainment of a true residual strength is difficult to First, the basic gravitational problem will be presented achieve. ASTM D5321 states that one should "run the followed by those additional loading situations which tend test until the applied shear force remains constant with to decrease slope stability. Second, various actions that can increasing displacement". Many commercially available be taken by the designer to increase slope stability will be shear boxes have insufficient travel to reach this presented. The summary will contrast the FS-values condition. obtained in the similarly crafted numeric examples. • The ring torsion shearing apparatus is an alternative device to determine true residual strength values, but is 3 SITUATIONS CAUSING DESTABILIZATION OF not without its own problems. Some outstanding issues SLOPES are the small specimen size,nonuniform shear rates along the width of the specimen;anisotropic shearing with some This section treats the standard veneer slope stability geosynthetics and no standardized testing protocol. See problem and then superimposes upon it a number of Stark and Poeppel (1994) for information and data using situations,all of which tend to destabilize slopes. Included this alternative test method. are gravitational, construction equipment, seepage and seismic forces. Each will be illustrated by a design graph 2.3 Various Types of Loadings and a numeric example. There are a large variety of slope stability problems that 3.1 Cover Soil(Gravitational)Forces may be encountered in analyzing and/or designing final covers of engineered landfills, abandoned dumps and Figure 3 illustrates the common situation of afinite length, remediation sites as well as leachate collection soils uniformly thick cover soil placed over a liner material at a covering geomembranes beneath the waste. Perhaps the slope angle"0". It includes a passive wedge at the toe and most common situation is a uniformly thick cover soil on a has a tension crack of the crest. The analysis that follows is geomembrane placed over the soil subgrade at a given and after Koerner and Hwu(1991), but comparable analyses are constant slope angle. This "standard" problem will be available from Giroud and Beech (1989), McKelvey and analyzed in the next section. A variation of this problem Deutsch(1991),Ling and Leshchinsky(1997)and others. will include equipment loads used during placement of Cova Soil cover soil on the geomembrane. This problem will be Active Wedge T.c.o solved with equipment moving up the slope and then wA h moving down the slope. Unfortunately, cover soil slides have occurred and it is felt that the majority of the slides have been associated cs GM with seepage forces. Indeed, drainage above a WP EP a�ob geomembrane (or other barrier material) in the cover soil passive Wedge E NA cross section must be accommodated to avoid the possibility of seepage forces. A section will be devoted to this class of slope stability problems. h � Lastly, the possibility of seismic forces exists in NP earthquake prone locations. If an earthquake occurs in the vicinity of an engineered landfill, abandoned dump or remediation site, the seismic wave travels through the solid Figure 3. Limit equilibrium forces involved in a finite waste mass reaching the upper surface of the cover. It then length slope analysis for a uniformly thick cover soil. 4- 1998 Sixth International Conference on Geosynthetics The symbols used in Figure 3 are defined below. By balancing the forces in the horizontal direction, the WA = total weight of the active wedge following formulation results: Wp = total weight of the passive wedge NA = effective force normal to the failure plane of the Ep cos(i= C+Np tan 4) (11) active wedge - FS Np = effective force normal to the failure plane of the Hence the interwedge force acting on the passive wedge passive wedge is: to y = unit weight of the cover soil EpC+Wp tan h = thickness of the cover soil _ cos RFS)—sin13 tan ch (12) L = length of slope measured along the geomembrane p = soil slope angle beneath the geomembrane By setting EA=Ep, the resulting equation can be arranged 4) = friction angle of the cover soil in the form of the quadratic equation ax2 +bx+c=0 which 8 = interface friction angle between cover soil and in our case,using FS-values, is: geomembrane Ca = adhesive force between cover soil of the active a(FS)2 +b(FS)+c=0 (I 3) wedge and the geomembrane ca = adhesion between cover soil of the active wedge and the geomembrane where C = cohesive force along the failure plane of the a=(WA —NA cos13)cos passive wedge c = cohesion of the cover soil • EA = interwedge force acting on the active wedge from b=—RW A —NA cos 1i)sin(i tan the passive wedge +(NA tan S+Ca)sin 13cos R Ep = interwedge force acting on the passive wedge +sin[3(C+Wp tan 4:1)]from the active wedge FS = factor of safety against cover soil sliding on the c=(NA tan S+Ca)sin2 R tan 4) (14) geomembrane The expression for determining the factor of safety can be The resulting FS-value is then obtained from the solution of derived as follows: the quadratic equation: Considering the active wedge, —b+�b2 -4ac FS = 2(L — 1 — tan1il 2a (15) WA = I\h sin f3 2 J (3) NA =WA cosi (4) When the calculated FS-value falls below 1.0,sliding of the cover soil on the geomembrane is to be anticipated. Thus a Cac I •L— h 5) value of greater than 1.0 must be targeted as being the = a l sin ( minimum factor of safety. How much greater than 1.0 the FS-value should be, is a design and/or regulatory issue. By balancing the forces in the vertical direction, the The issue of minimum allowable FS-values under different following formulation results: conditions will be assessed at the end of the paper. In order to better illustrate the implications of Eqs. 13, 14 and 15, NA tan 8+Ca typical design curves for various FS-values as a function of EA sin 13=W A —NA cos(i— sin(i (6) yP g FS slope angle and interface friction angle are given in Figure Hence the interwedge force acting on the active wedge is: 4. Note that the curves are developed specifically for the variables stated in the legend of the figure. Example 1 (FS)(WA —NA cos ti)—(NA tan 8+Ca)sin(i illustrates the use of the curves in what will be the standard EA = sin 13(FS) (7) example to which other examples will be compared. The passive wedge can be considered in a similar manner: Example 1: Given a 30 m long slope with a uniformly thick 300 mm .012 cover soil at a unit weight of 18 kN/m;. The soil has a Wp = (8) friction angle of 30 deg. and zero cohesion,i.e., it is a sand. sin 213 The cover soil is placed directly on a geomembrane as Np =Wp+Ep sin 13 (9) shown in Figure 3. Direct shear testing has resulted in a interface friction angle between the cover soil and (c)(h) geomembrane of 22 deg. with zero adhesion. What is the C= (10) FS-value at a slope angle of 3(H)-to-1(V),i.c., 18.4 deg? sin(i 1998 Sixth International Conference on Geosynthetics-5 1 Analysis of Veneer cover soils per Koerner and Hwu(1991) input Data Unit weight of cover total weight of active Factor of gamma 110 soil pcf wedge WA 14166.31 a 1979.902451 Safety FS 1.944909177 Thickness of cover soil Height 2.5 f Lenth of slope Length 60 f effective force normal to NA 13472.97 b -4242.797755 the failure plane soil slope angle Beta angle 18 degree Adhesion between adhesive force between cover soil and ca 84 psf active soil wedge and Ca 4360.426 c 762.5353054 geomembrane geomembrane Friction angle of cover phi 32 degree soil Interface friction angle total weight of the between cover soil and sigma 32 degree WP 1169.645 geomembrane passive wedge Cohesive force along failure plane of passive C 0 psf wedge - Veneer Calculations - Assumptions - Unit weight of soil-y= 110 pcf - As per Final Soil Closure Plan prepared by Dvirka and Bartillucci, December 1998,pg 5-2 - Thickness of cover soil-H=2.5 FT - From Soil Closure Plan pg 5-2 - Length of slope=L=60 FT - Measured from proposed photovoltaic layout prepared by Whitman - Soil slope angle=[3 = 18° - Measured from existing topographic survey - Adhesion between cover soil and - Taken from published literature geomembrane=Ca= 84 psf (Assumed value) - Friction angle of cover soil - Assumed based on soil type =32° - Interface friction angle between - Taken from published literature cover soil and geomembrane (Assumed value) S= 32° - Cohesive force along failure plan of - Assumed based on soil type passive wedge C =0 psf W WHITMAN Analysis of Veneer cover soils per Koerner and Hwu(1991) input Data Unit weight of cover total weight of active Factor of soil gamma 110 pcf wedge plus solar rack WA 14466.31 a 2021 830841 FS 1928889138 surcharge Safety Thickness of cover soil Height 2.5 f Lenth of slope Length 60 f effective force normal to NA 13758.28 b -4300.72633 the failure plane soil slope angle Beta angle 18 degree , Adhesion between adhesive force between cover soil and ca 84 psf active soil wedge and Ca 4360.426 c 773.1735693 geomembrane geomembrane Friction angle of cover phi 32 degree soil Interface friction angle between cover soil and sigma 32 degree total weight of the WP 1169.645 geomembrane passive wedge Cohesive force along failure plane of passive C 0 psf wedge To model the anticipated settlement of the landfill materials, the following assumptions were made: • The final cap will be 2.5 feet thick and has a moist unit weight of 110 pounds per cubic foot(pcf). • The amount of fill placement associated with the final subgrade preparation will vary from 0 to 10 feet. The proposed fill will be a sandy material with a moist unit weight after placement of 113 pcf. • The thickness of waste material in the landfill varies between 5 and 40 feet. • The landfill material consists of MSW and/or C&D that was last placed in 1993. The northwest section of the landfill may also contain "yard waste" in the upper approximately 15 feet of landfill materials. The results of the settlement analysis indicate that the landfill material will settle relatively significantly due to further compression of the waste, and the weight of the proposed fill soils and final landfill cap. Table 5-1 presents the estimated amounts of primary, secondary and total settlements based on landfill depths ranging between 5 and 40 feet and proposed fill depths ranging between 0 and 10 feet. This table assumes that the landfill material consists of MSW and C&D without any yard waste. The study also evaluated the estimated settlement based on the above-presented assumptions with the upper 15 feet of landfill material consisting of relatively soft, organic yard waste. Table 5-2 presents the estimated settlements based on a 2.5-foot thick final cap, proposed subgrade fill depths up to 10 feet, and up to 15 feet of yard waste underlain by up to 25 feet of MSW and C&D. Based on the results of the settlement analysis, long-term settlements for the landfill may range from approximately 1 foot to over 9.5 feet, depending on the condition and depth of the landfill material, and depth of proposed overlying fill and cap. •1314\00819801.DOC(R02) 5-2 For this reason, the friction angle for the interfaces were calculated at both the peak stress 1 I and the stress at 10 % strain. It can be readily seen,comparing Tables 4.1 and 4.2, that the interface angle for PVC membranes at initial peak (yield stress for the interface) is much lower than at higher strain. However, the yield point of the interface does not represent a failure condition. This is because further shearing causes an increase in strength and not a decrease, whereas further shearing in HDPE causes reduced strength.Therefore, under field conditions, if the PVC membranes are stressed beyond the yield stress for the interface, the material stretches under the load without any loss of strength or material damage. Table 4.1 Interface Friction Angle values ( degree)obtained for various interfaces tested( at 10%strain ) Fine Sand Sandy Loam Silty Clay Non-woven Geotextile 30 mil Smooth PVC 34.7 26.4 20.8 21.9 ( at 10 % strain) 30 mil textured PVC 35.3 21.1 26.4 19.6 ( at 10 % strain) 30 mil File-fmish PVC 30.9 28.1 26.0 17.3 ( at 10 % strain) _ 60 mil Smooth HDPE 21.1 18.2 17.0 14.2 ( at 10 % strain) 60 mil Textured HDPE 36.6 33.8 41.8 17.4 ( at 10 % strain) Table 4.2 Interface Friction Angle values ( degree)obtained for various interfaces tested( at Peak Stress) Fine Sand Sandy Loam Silty Clay Non-woven Geotextile 30 mil Smooth PVC 34.7 26.4 21.5 11.3 ( Peak stress ) 30 mil textured PVC 35.3 19.9 22.9 13.2 ( Peak stress ) 30 mil File-finish PVC 30.9 28.1 27.7 11.4 ( Peak stress ) 60 mil Smooth HDPE 23.6 25.2 25.8 15.1 (Peak stress ) 60 mil Textured HDPE 36.6 33.8 41.8 17.4 (Peak stress ) 17 NOV-627-99 15: 39 FROM: ID: 3649845 PAGE 6/7 Table 4.1-1 TYPE I fi80TZXTILE Fabric Property Test Method it Specified Qualified" Value Fabric Weight ASTM D5261 oz/sq yd 7.9 MARV Thickness, t ASTM D5199 mils 85 MARV Grab Strength(2) ASTM D4632 lbs 210 MARV Grab Elongation") ASTM D4632 50 MARV Trapezoid Tear ASTM D4533 lbs 80 MARV Strength") Puncture ASTM D4833 lbs 100 MARV Resistance Mullen Burst ASTM D3786 psi 320 MARV Strength Water Flow Rate ASTM D4491 gpm/sq ft 90 MARV Permittivity ASTM D4491 sec4 1.2 MARV Permeability ASTM D4491 , cm/sec 0.3 MARV Apparent Opening ASTM D4751 sieve size 70 MARV Size (AOS) len 0.212 UV Resistance ASTM D4355 % strength 70 MARV retained pH Resistance 2-13 Range • Notes: (1) MARV - Minimum Average Roll Value. (2) Values in the weakest principal direction. •1314/k0820902_doc(R04) 4 . 1-7 ,*y Geosynthetic Institute GRI 475 Kedron Avenue ®.1111.4310 Folsom, PA 19033-1208 USA VEY, TEL(610) 522-8440 FAX (610) 522-8441 GAI 111114130 GRI White Paper #11 Interpretation(s) of Laboratory Generated Interface Shear Strength Data for Geosynthetic Materials With Emphasis on the Adhesion Value by Robert M. Koerner and George R. Koerner Geosynthetic Institute 475 Kedron Avenue Folsom, PA 19033 USA Phone (610) 522-8440 Fax (610) 522-8441 E-mail: robert.koerner@coe.drexel.edu gkoerner@dca.net September 11, 2007 Interpretation(s) of Laboratory Generated Interface Shear Strength Data for Geosynthetic Materials With Emphasis on the Adhesion Value The beginning point of this White Paper is ba sed on the assumption that a designer has a credible set of laboratory generated shear st ress versus shear displacem ent curves on the desired g eosynthetic-to-geosynthetic or ge osynthetic-to-soil interface tested per ISO 12957 or ASTM D5321, or ASTM D6243 if geosynthetic clay liners are involved. In this regard we are considering having such data as shown in Figure 1. It is clearly seen that many behavioral trends are possible. imi r( 3404 I2 it D 1 ■ri.uii uii.u! 1050 In AlwAim www 0 DA Oi 12 17 23 23 31 2r 0 10 20 5D 40 :0 20 70 m 0,0*03 1032244241.242wnitsrimmi E 1wwW�=mm Mr-a-wmp211 500 Shear Stress vs.Displacement 450400 400 100)mi "300 p0) £530 pal rao —o--IC 350 , C 300 f' c 300- . ., m 250 230. . 200 .. % , •.,. • ' 0 150 ""als.>tr.sany'�niT ..n.... ..,,.. gp.." •'-' 101i ✓ 100 - 130- 00 100 .,,.......... .. .... ., .. 0 30 0.0 10 20 30 40 - _ E D; Displacement(inches) -_ 0,0 0 5, 1.0 1.5 2.0 2 5 3.0 Displacement(in.) Figure 1 —Various stress versus displacement curves for different geosynthetic materials. (Data compliments of TRI, Golder, Precision and SGI Laboratories) Either th e designer or the testing laborato ry will have to genera te the Mohr-Coulom b failure envelope from these curves by selecting one point on each normal stress curve and plotting the results on a normal stress versus shear stress curve as shown in Figure 2a. A least squares fit of the data point produces the failure envelope. Even further, one might have m ore than one such failure envelopes; peak, large displacem ent and/or residual. Please no te, however,that th is W hite Pap er is not about the selection of peak, large displacement or residual values and the technical literature is abundant on that subject. - - ISO 12957 pr ASTM D 5321 Results 14 y=0.38x+4.16 12 - --- R2=0.98 10 _ ; u _ UsingT=ca+a„tan6 a one obtains: r 8 _______. _ _ __�- friction angle; S=20.8° adhesion; ca=4.16 kPa m 6 - d t ' 2 --- --_ ® 1 - 0 5 10 15 20 25 Normal Stress;an(kPa) Figure 2a—Three point laboratory data leading to the drawing of a failure envelope and subsequent measurement of friction angle and shear strength intercept (or adhesion)values. At any rate,to begin the presen t discussion on the in terpretation of the selected failure envelope,the designer is confronted with something like that shown Figure 2a. Here the data points are clearly identified and the failu re envelope is usually generated by a least squares fitting procedure. The dashed exte nsion to the y-axis is of ten the gen eral assumption particularly for low norm al stresses as indicated. Note that there are indeed exceptions to this situation such as curved failure envelop es within th e norm al stres s range tested, or zero no rmal stress tests. They are spe cial cases and w ill b e discussed later. Interpretation#1 —Use of full "ca" and full "8"values Assuming that the previous failure envelope is based on credible laboratory procedures, properly simulated insofar as representative samples,norm al stress selection,m oisture conditions, strain rate, etc., our recommende d approach is to use the shear strength parameters directly in your slope stability analysis and, if found to be adequate, for your materials specification criteria as well. Fo r landfill cover veneer stability problems all GSI Members and Associate Members should have our spread sheet calculation program which is ex tremely easy to use. Fo r others, there are m any computer codes availab le. For a hypothetical veneer slope stability example using the two shear strength parameters (Ca and S) from Figure 2a, the input information is as follows: a • cover soil thickness h=0.3 m • slope angle [3.= 18.4° (3-to-1) , • length of slope L= 30.0 m • unit weight of cover soil y= 18.0 kN/m3 • friction angle of cover soil 0 =30.0 deg • cohesion of cover soil c= 0.0 kN/m2 • friction angle of interface S=20.8 deg • adhesion of interface Ca=4.16 kPa(= 87 psf) By using the program just mentioned or similar procedure,the resu lting slope factor-of- safety value is; FS=3.62. This is a relatively high value and would generally be considered quite conservativ e. One point worth m entioning,however, is the strong influence of the adhesion value on factor-of-safety. To illustrate this,we now vary the Ca- value avalue between zero and ten wh ile holding everything else th e sam e. This procedure results in th e following table; clearly illustrating the sens itivity of the FS-value to this particular parameter. Adhesion;"Ca" Resulting kPa lb/ft2 FS-value 0 0 1.18 2 42 2.35 4 84 3.53 6 125 4.70 8 167 5.80 -- 10 209 7.05 Presented now is the heart of this White Paper concerning the issue of how reliable is this laboratory generated ca-value? T he ultimate decision is yours as the designer,but our opinions on different geosynthetic materials and related interfaces are as follows: (a) For textured geom embranes against geotex tiles or so il,th e asper ities (be th ey manufactured as structured,blown film , or impinged) are on the m aterial giving rise to the high adhesion values, so we recomm end using the adhesion value accordingly. Only by c ontinuously rubbing the surfaces against one ano ther can asperity reorientation occur and we feel this is an artifact of aggressive laboratory testing as has been done(and reported) using the ring shear testing device in particular. Alternatively, c oncern has been expressed wh en testing at very high ' normal stresses. The thought in both instan ces is that if you eliminate adhesion from textured geomembranes you are'e ssentially assuming smooth geomembrane sheet. This is a designer's prerogative, but be prepared to have very gentle slopes , in so doing. (b) For smooth geomembranes against other geosynthetics or soil, a small adhesion is often observed. This is pa rticularly the c ase for LLDPE, fPP, EPDM, and PVC. Each of these geom embranes are less hard than HDPE, and thus an indentation can be visualized (particularly dealing with soil)which is clearly a function of the , applied normal stress. Assum ing that th e appropriate normal stresses were used in the direct shear test,we feel that one is generally justified in its use. (c) For geotextiles therm ally bonded to geonets or other type s of drainage cores, we feel that the full value of adhesion shoul d be used. Most of these geocomposites can barely be"delaminated" in the conducting of the test and we have never heard of a field delam ination problem from a properly m anufactured geocomposite interface in this regard. (d) For the internal shear strength of reinforced GCLs,the fibers would have to pull- ', ' out or break(or both) for a loss of a dhesion. While you can force this to happen in the lab,we have no eviden ce o f this oc curring in th e field. Tes t resu Its invariably show high adhesion values. Furt hermore, longevity (durability) of the fibers in a hydrated bentonite atm osphere promises 100-year lifetim e, or longer. We have a creep-related paper in this re gard. Thus,we see no reason not to use the laboratory generated value of adhesion for reinforced GCLs m anufactured by either need lepunching or stitching. Of c ourse, the upper an d lower interfaces of the GCLs must be independently evaluated. (e) For certain geosynthetic-to-soil interfaces,the interface shear behavior may force the failure plane into the,soil. This results in the identification of the soil's shear strength and if there is a shear strength intercept it is a cohesion value and can be • used accordingly. Thus, if adhesion from short- term testing is in dicated by the failure envelope and the long-term perm anence of the physical or m echanical m echanism giving rise to this adhesion is logical to anticipate, its use in a stability analysis and subsequent m aterial's specification is felt to be generally justified. Interpretation#2—Use of zero "c "and full "s"value For the situation where an adhesion is indi cated by the failure envelope and you as the designer feel,that its long-term existence is not justified,the most conservative approach you can take is to sim ply translate the entire failure envelope in a parallel m anner down by the amount of adhesion indicated on the original data-generated graph; see Figure 2b. The effect of this very conservative approach on the FS-value of the sl ope is substantial. The shear strength is now represented by a friction angle alone and the site-specific result ' will be very flat slopes. For exam ple,the 3-to-1 slope in the hypothetical exam ple given previously with an adhesion of zero,now ha s a FS = 1.18 using this approach. For the interfaces mentioned previously, we do not recommend this approach. Alternatively, one could also decrease the adhe sion slightly, but not entirely. That said, we really don't know how to comment on this type of"compromise" situation? ISO 12957 or ASTM D 5321 Results 14 y=0.38x+4.16 12 Rz 0,98 ea a. i6 -_.—-��.�� - - -- - Using T=ca+a„tan S ` • one obtains: to 4 - - --- -_ friction angle;8=20.8° its adhesion; ca= 0 s2 • --- -- en 0 5 1n 1.r, _0 25 Normal Stress;an(kPa) Figure 2b-Parallel translation downward of the entire laboratory generated failure envelope by an amount equal to the y-axis intercept, i.e.,the adhesion. Interpretation#3-Use of zero "ca"at zero normal stress only A hybrid interpretation som ewhere between the interpretations just presented is sometimes suggested,but its logic is som ewhat difficult to fathom . In essence,the adhesion is lost only at zero norm al stress bu t not at higher norm al stresses. Thus,the failure envelope is forced through the origin but thereafter it is based on a least squares fit of the laboratory tested points as they were gen erated. Fig ure 3 illustrates the situ ation where the resulting friction angle is seen to be 32.2°. For our hypothetical exam ple,this results in FS = 1.93. Alternatively, and equa lly difficult to fathom , i s when onl y one laboratory point is generated and the failure e nvelope is forced through it and the origin. Both approaches are the least conservative of those mentioned in this White Paper giving rise to a rotation of the failure envelope and the highest friction angle possible. The angle resulting from this practice has been vari ously called "secant friction angle", "sec ant angle", or"modulus angle". Of the group, seca nt angle is probably the best description for this interpretation since it shouldn't be confused with the Mohr-Coulom b friction angle, and modulus brings with it completely other test procedures like tension testing. We generally do not recomm end such approaches for the reason that adhesion should be an intrinsic property of the interface involved and not be arbitrarily eliminated or used on the basis of a particular normal stress, or stresses. (That stated, if the interface is tested at zero normal stress and found to have zero adhesi on,the origin is a va lid point and should then be used accordingly). ISO 12957 or ASTM D 5321 Results 16 - 14 — y=0.63x La 12 - R2=0_50 v 10 — " m8 Using T=Ca+an tan 6 4 one obtains: N 6 friction angle; 6=32.2° 4 ---- —— adhesion; ca=0 N 2 - _.. i 0 . 0 5 1,0 15 20 25 Normal Stress;a„(kPa) Figure 3—Elimination of adhesion at zero normal stress but not at any of the three laboratory measured data points. Interpretation#4—Use of the total shear strength at a particular normal stress A very straightforward appro ach to a sp ecification v alue is to requ ire a certain s hear strength value at a particular norm al stre ss. This is par ticularly the cas e if the failure envelope is curved as mentioned previously. In so doing, a specifier is requiring a single point to be taken from the failure envelope which is targeted at the expected field normal stress. Figure 4 suggests that if the field nor mal stress is 17.2 kPa it results in a required shear strength of 10.7 kPa, or greater. The sh ear strength value is thereby reflective of ' both a frictional component and adhesion, neither of which are specifically identified. In so doing one avoids specifying individual "c a"and" S" values an d m uch of the previous discussion is altoge ther avoided. The m ethod can be extended to give two, or more, values of shear strength (or even the eq uation of the failure envelope) at different normal stresses in the form of a"required"table. This approach has been used by a select few designers but is far fr om common practice. There is nothing of a fundamental nature which says it cannot be done and it would avoid some of the other complications inherent with different approaches. ISO 12957 or ASTM D 5321 Results 14 y=0.38X+4.16 12 - — R2=0.98 — -- 10.7 kPa a. • ID 6 — -- m &- 4 d en 2 — — — 17.2 kPa 0 0 5 10 15 20 25 Normal Stress;an (kPa) Figure 4—Use of a laboratory generated failure envelope by specifying a site-specific normal stress and requiring a minimum value of shear strength taken directly off of the y-axis. In summary,there are probably other or interm ediate interpretations of an interface shear strength failure envelope for use in design and then a subsequent specification,but those presented here are felt to be the most common. DUAL POST BALLAST DESIGN / 0 1140 /bS PROJECT NAME:Southold Landfill DATE: 5/14/2015 / �j; , / ! f LOCATION:Cutchogue,NY ENGINEER: NDA (` PROJECT NO.:153146 q < 347) Zone: North Rows @ 16.7ft TRIAL Worst Case(2nd Ballast from Edge) Post ,_";W8z107"•'ft Governing Load Combination#76 Length(N-S) -.-'gA:5,,,7,-;_,ft 1 2 Width(E-W) ;-,,.3;6T rT ft Axial Force . c1566' 5'53:443 g`=:kips Footing Depth ::T!1di n'"'%ft Moment .._M1:84',.`;"`:='rw`--0:476 :k-ft Depth Below Grade ?,.'-Q"„F.`;-'ft Shear i f_,'159 ^":M r'x`0:14kips Concrete Strength(f'c) 54;4'.'5i t.&.ksi Edge Length ;1:75`, •;1:5,,;'i ft Soil Density(pcf) .<-,4110%-, pcf Coeff Of Friction a``i 4.35;_:, Rebar Clearance(in) ;:`3`,''x--; in Allowable Bearing ,°',;%:F_i 4,""; =" ksf -- _Volume(ft^3) 69.73 Conc Wt `,'•,=:. }150;',;'it--.e'7,^4..,pcf Section Modulus 15.04 in' Sliding F.S. ',:,fix ;145", ;�,,,,`:=, Wt.of Footing 10.46 kips ::-`.` i Lateral Bearing Pressure`- "-=•;i,'0.15-..... ...,5,•.-=',„' , ,ksf/ft Passive Pressure 0 kips ,,_ ;, , STABILITY CHECK ® Q.:,_(----) ,..„4-7---.) '1gy MMUYr M.4 ' Sliding Resistance 2.224775 kips F.S.= 1.29 ` Ia..,.� Pass Press+[Conc.Wt + i- AVM. {� a Axial Force)'Cod.Friction Ii i foo+.Na (DUwL'Post) INpM @ICu I Uplift F.S.= 8.74 - - , Footing weight/Uplift due to wind Over Turning: (+)Resisting Moment(-)Overturning Moment A B Moment Due to Axial Load -21.84 -1714 k-ft Moment Due to Horizontal Load -3 45 3 45 k=ft ` Applied Moment -2 32 2.32 k-ft Moment Resisted By Footing Wt., 49.68 49.68 k-ft , Moment Resisted By Soil Wt. 0 00 0.00 k-ft Mrg,ning Sum= 49 68 55 45 Mo„wn,ning Sum= -27 61 -17.14 F.S.= 1.80 (Overturning at Point A Governs) Minimum Reinforcing Mu(transverse) 4 66 ft-kips Moment at critical section for flexure(Transverse) p(row) 0.000021 As(req'd) 0 049 in2 Mu(longitudinal) 1259 ft-kips Moment at critical section for flexure(Longitudinal) p(row) 0 000056 As(req'd) 0051.n2 As(min)-Longitudinal 1 90 m2 Governs As(min)=.0018bh As(min)-Transverse 4.92 in2 Governs USE ". ' "`4 x` #5's Longitudinal(T&B) 2.48 int > 1.90 in2 OKI Or(5)#4's T&B -8„'.•--,#5's Transverse(T&B) 4.96 in2 > 4 92 m2 OKI DUAL POST BALLAST DESIGN /c21 If(90 PROJECT NAME:Southold Landfill DATE: 5/14/2015 /_ .� ���� y/ ^ LOCATION:Cutchogue,NY ENGINEER: NDA J C,j S I�� PROJECT NO.:153146 . li i /`(7 Zone: North Rows @ 16.7ft TRIAL (3rd Ballast from Edge) - , Post ‘,W8ir0:kr,ft Governing Load Combination#76 Length(N-S) r95'1-.--?ft 1 2 Width(E-W) ?3:67 =',i ft Axial Force -'4233„�. k';'t11:985- i3 kips Footing Depth <-Y,r:2erre ft Moment :=14543,.```,-*_9.396",4_.,k-ft Depth Below Grade �,',Op rz;'ft Shear ".=1:32, m:;D.r116=s' kips Concrete Strength(f'c) 3# T,'ksi Edge Length {;,-;"1:75 :='., „`11'75-7,,,:ft Soil Density(pcf) 4.10?1pcf Coeff.Of Friction -•47;”s, =0.35;',x„n;,;:, Rebar Clearance(in) :4,;‘-'23v.:w„ in Allowable Bearing *,";;,1}3.?:�„`<•_s:';ksf Volume(fte3) 6973 Conc.Wt ,,, ;`S--150�'__''`Nw2;pcf Section Modulus 15 04 in' Sliding F.S. r, , 1'31,:. Wt.of Footing 10.46 kips ,'-7,!,,:',...,„51'-5''”,;�,'.,,, Passive Pressure 0 kips Lateral Bearing Pressure% ^ „ .15•,,y'-.,(.` ksf/ft STABILITY CHECK ® CD .,.._4 "--7”) :......._n Sliding Resistance 2.499875 kips F.S= 1.74 • _ • Pass Press.+[Cont Wt.+ hum Av./ ! Axial Force)'Coef.Friction � f .s Foo+iNra (Punt'Post) ��—— ( seAm , Uplift F S.= 9.84 ! Footing weight/Uplift due to wind i Over Turning:(+)Resisting Moment(-)Overturning Moment A B Moment Due to Axial Load -17.71 -13 80 k-ft Moment Due to Horizontal Load -2 88 2 88 k-ft Applied Moment -193 193 k-ft Moment Resisted By Footing Wt 49.68 49 68 k-ft Moment Resisted By Soil Wt 0 00 0.00 k-ft M,„„,,8 Sum= 49 68 54 49 Movertum,na Sum= -22.52 -13 80 - F S= 2.21 (Overturning at Point A Governs) Minimum Reinforcing Mu(transverse) 4 79 ft-kips Moment at critical section for flexure(Transverse) p(row) 0.000021 As(req'd) 0 051 in2 Mu(longitudinal) 12 94 ft-kips Moment at critical section for flexure(Longitudinal) p(row) 0 000057 As(req'd) 0.053 in2 As(min)-Longitudinal 190 in2 Governs As(min)=.0018bh As(min)-Transverse 492 in2 Governs USE 4 ^,• #5's Longitudinal(T&B) 2 4811.12 t > 190 in2 OKI Or(5)#4's T&B ::,,ars-,-- , #5'sTransverse(T&B) 496 in2 > 492 in2 OKI 7.-4.94 F '11,11 R-1371 Job No Sheet No Rev =SOLAR ter _Software licensed to Rough Brothers Part T.B.D. 1 Job Title SOUTHOLD LANDFILL Ref By Date15-May-15 Chd Client F11e North Row.std Date/time 18-May-2015 08.59 =0075 kip =-1 326 kip =0002 kip X=-0.001 kip-ft `/ Y=0.000 kip-ft /- Z=-0 256 kip-ft `t=0.140 kip /bbb� i'_-2A43 kip °✓ Z=0.092 kip - MX=0 002 kip-ft MY=0 000 kip-ft _____< Iff, k=0853 kip a Z=-0476 kip-ft X=0.116 hip P Y=-0.905 kip \ jb\ Y=•1985 kip p Z=0.000 ki MX=00001ikip-R \ NX=0000 kip-R W1Y=0 000 kip-ft WIY=0 000 kip-ft Wa=0990kiPft WIZ=•0396k1Pft \ 2. \ k=0.172 kip k=1.586 kip Y=-1.899 kip • Y=-1660 kip \ • Z=0.000 kip _ MX=0000 kip-ft MX 00 022 ikip•ft °� MY=0.000 kip-ft MY=-0.000 kip-ft �0j NZ=0 382 kip-ft MZ=-1841 kip-ft %) f •,,,.....4,,, r =0.112 kip =-1.899 kip '=0.000 kip X=1323 kip X=0.000 kip-ft Y=-1332 kip \o • Y=0.000 kip-ft X-00000Th \ -Z=-0382 kip-ft MX = X=-0.000 kip-ft \\\0. MY=0000 kip-ft �u' i =0.056 kip MZ=-1.536 kip-ftft , • k =0 0000.949 kip1p X=t273 kip ,'� X=0.000 kip-ft Y=-1.270 kip ° \ V=0 000 kip-ft 2=-0 000 kip X Z=-0 191 kip-ft_ MY=-0.000 Mpf \� , MY=0.000 kip-ft \ MZ=•1.478 klPft l, =1.273 kip \ °L. =-1.270 kip \\ % 0 = 000 kip °. X=•0 000 hip-ft ° Y=0 000 kip-ft � Q=-1.478 hi ft Lend 76 X=0.637 kip •Y=0.635 klp Z=-000010 MX=-0.000 kip-ft MY=0 000 kip-ft A1Z=-0.739 kip-ft LC 76 • • Print Time/Date 18/05/201515 11 STAAD Pro V8i(SELECTseries 1)20.07 06.34 Print Run 1 of 1 DUAL POST BALLAST DESIGN �G -1 L I Li r____z... PROJECT NAME:Southold Landfill DATE: 5/14/2015 / 7�_C,/ — ( LOCATION:Cutchogue,NY ENGINEER: NDA (9,-5-A /.�f� PROJECT NO.:153146 (9. A 5 Z S Zone: South Rows @ 16.7ft lll... TRIAL Post FA:W8z10 r ft Governing Load Combination#76 Length(N-S) ;�9.5; ft 1 2 Width(E-W) '-;;;-?,3'25.,,-;:. ft Axial Force ;;;1:33=' .; 1:981<<i-[kips Footing Depth ,!!!--.7,--S7.2-..;'-`;',:2-ft Moment n-453'J'�a:'.; 0_36s k-ft Depth Below Grade ;:'O.e;;='::::ft Shear :n.-:;131:in=k;s X0:116 t_kips Concrete Strength(f'c) - ;3`,l-: t ksi Edge Length ,^1:7.5 as",.7,- ,*,/s`in ft Soil Density(pcf) "110 pcf Coeff Of Friction <':,_w-f0.35.- -- Rebar Clearance(in) 0;3".„ in Allowable Bearing r,/,,j?':Y ksf Volume(ft^3) 6175 Conc.Wt37i::;150,:kr;;PI,„-„pcf Section Modulus 15.04 in Sliding F.S. :- r:.-i-1 sx'e .y3 Wt of Footing 9.26 kips '"'+',}' 's'-, Lateral Bearing Pressure `,`::0.15+ti,-.,'ii 1N,ksf/ft Passive Pressure 0 kips ,'°-'ivr ,;'!;w <,1:<-3'- STABILITY CHECK i ® E ....__ :"..;) , , '.,--no...) ;l Sliding Resistance 2 083375 kips F S.= 1.45 R Pass Press +[Cone.Wt.+ Auw iAlu� Axial Forcer Coef.Friction ; wma , .B - Foo+iNa' (Dungy,Post)' ri w 1 t ' LENGTH 1. Uplift F.S= 8.951 4. - Footing weight/Uplift due to wind Over Turning:(+)Resisting Moment(-)Overturning Moment A B Moment Due to Axial Load -17.68 -13 77 k-ft Moment Due to Horizontal Load -2.87 2 87 k-ft Applied Moment -193 1 93 k-ft i Moment Resisted By Footing Wt 44 00 44.00 k-ft Moment Resisted By Soil Wt. 0.00 0 00 k-ft M,. ieg Sum= 44 00 48 80 Movenummg Sum= -22 48 -13.77 F S= 1.96 (Overturning at Point A Governs) Minimum Reinforcing i I Mu(transverse) 3.62 ft-kips Moment at critical section for flexure(Transverse) p(row) 0.000016 As(read) 0 038 in2 Mu(longitudinal) 1131 ft-kips Moment at critical section for flexure(Longitudinal) p(row) 0.000050 As(read) 0.041 in2 As(min)-Longitudinal 168 in2 Governs As(min)=.0018bh As(min)-Transverse 4 92 in2 Governs USE :3:_ #5's Longitudinal(T&B) 186 in2 > 168 in2 OKI Or(4)#4's T&B x"8'?''y'#5's Transverse(T&B) 4 96 in2 > 4 92 in2 OKI `°4 + Job No Sheet No Rev A _I t T.B.D. 1 RBI SOLAR Software licensed to Rough Brothers Part Job Title SOUTHOLD LANDFILL Ref By Date15-May-15 Chd Client File South Row std Date/time 18-May-2015 08.59 X=0070 kip Y=-1.224 kip Z=-0.002 klp - MX=-0001 kip-ft• X=0116 klp MY=0 000 kip-ft /°\'\ MZ ki•ft Y=-1981 lop A Z=0.002 kip p MX=0 002 kip-ft N''' MY=-0000 kip-ft \ MZ=-0.396 kip-ft \ °l X=0.103 kip Y=-1.725 kip b Z=0.000 kip MX=0.000 kip-ft X=0.795 kip MZ=0.35 kip-ft kip-ft \ \ MZ=0.000 kip•k Y=-0 832 kip — Z=-0 001 kip m� />\A M%=-0 007 kip-ft • X=0098 kip MY=0.000 kip-ft MZ=-0.923 kip-ft Y=-1 618 kip / Z=00.0kip �,°/ MX=0000kip-ft X=1 320 klp \• MY=0.000 kip-ft Y=-1.329 kip MZ=-0 333 kip-ft Z=0002 kip o MX=0 002 klp-ft %=0.097 kip MY=-0000 kip-ft \ ‘0. Y=•1608 kip MZ=-1533 kip-ft MX=0 0.000 kip \ MX=0000k1p-t X=1.174 kip / MY=0 000 kip•k Y=-1.145 kip m� x MZ=.0003037k 0 331 kip•ft Z=-0 000 kip o MX=-0 000 kip-ft m MY=-0000 kip-ft o X=0049 kip MZ=-1 362 kip-ft \ �m /� Y=•0 804 kip \ J° I Z=0000 kip MX=0 000 kip-ft X=1112 kip ' : MY=0000kip-f5=-0000 kipb \ \ MZ=-0166 kip•ftZ=-0 OOD kfp MX=-0 000 kip-ft MY=0 000 kip-ft AIZ=-1 291 kip-k /\''''V-1 °- Y=-106 kip \ j Y=1.06062 kip Z X-0.000. kip Lnatl 76 MX=•OOOD kip-ft MY=0 000 kip-ft dZ=-1 285 kip-ft X=0 553 kip Y=-0.531 kip Z=-0.000 kip MX=-0.000 kip-ft MY=0 000 kip-ft MZ=-0 642 kip-ft LC 76 Print Time/Date•18/05/2015 15 21 STAAD Pro V8i(SELECTseries 1)20 07.06 34 Print Run 1 of 1 • DUAL POST BALLAST DESIGN n i PROJECT NAME:Southold Landfill - DATE: 5/14/2015 / /�� ��/�! LOCATION:Cutchogue,NY ENGINEER: NDA (� 3c•, PROJECT NO.:153146 qr 7 ` Zone: Interior Rows @ 20.0h /. )' "92- TRIAL Governing Load Combination#76 Post ;;WSz10.4,,,ft Length(N-S) ..9:5- ;Z,.-ft 1 2 Width(E-W) x;_':'2:42'.4'1'ft Axial Force ";-0;90`7--,``r ;;1AO2;." kips Footing Depth -‘1!J,;,--..2'-', 7.'";ft !Moment - - 1:19",> 1-•'i{"0:306,-?z k-ft Depth Below Grade 'A,-.-:,0:,;,-";`"ft Shear :x=1=:03;..;;:-it;:.t009a kips Concrete Strength(f'c) x- ,3,a-;_,'".ksi Edge Length =K`1d75 :XX.n--75a -ft Soil Density(pcf) :'.4=-110,, pcf Coeff.Of Friction '-v'''',$'14!„0:35;,`,;71,-10,n;-.-,! Rebar Clearance(in) 3:`%W,i-2 in Allowable Bearing ..c<<.;w:-r.'3:;� ;;;:=<4.,,7;ksf Volume(ft^3) 45.98 Conc Wt :,r,,.`?>;s,:,".a150.!a' ;Z.l:rx.pcf Section Modulus 15.04 in3 Sliding F SAi-,-,,:''':3,5,'::'.7•.i:':;,3}>, Wt.of Footing 6 90 kips '7'-"-'-'----1-4,.:!"!"4,-,-'�f ' Lateral Bearing Pressure ' ;015„_-. ':1-' ksf/ft Passive Pressure 0 kips c-. _,a , „,-".7!-":,,,;%,,-.- ! _".�1,:,;-,,.- STABILITY CHECK ® 0 flM ,.' /{+,� wuvr I Qat Sliding Resistance 160965 kips F S= 1.44 1 I ) Pass Press+[Cont Wt+ � t �"� Axial Force)•Coef.Friction wmE foo+iN4 ' (Dong'Post) +B osIM stW gams ' LENATH- �. Uplift F S= 9.10 I �1 Footing weight/Uplift due to wind Over Turning:(+)Resisting Moment(-)Overturning Moment A B Moment Due to Axial Load -12.43 -9 40 k-ft Moment Due to Horizontal Load -2 23 2 23 k-ft Applied Moment -1.50 150 k-ft Moment Resisted By Footing Wt 32 76 32 76 k-ft Moment Resisted By Soil Wt 0 00 0 00 k-ft M,gin,„a Sum= 32.76 36 49 Movortummg Sum= -16.16 -9 40 F S.= 2.03 (Overturning at Point A Governs) Minimum Reinforcing j Mu(transverse) 1.88 ft-kips Moment at critical section for flexure(Transverse) p(row) 0 000008 As(req'd) 0.020 in2 Mu(longitudinal) 8.57 ft-kips Moment at critical section for flexure(Longitudinal) p(row) 0.000038 As(req'd) 0 023 in2 As(min)-Longitudinal 125 in2 Governs As(mm)=0018bh As(min)-Transverse 492 m2 Governs USE - 3 i ;- #5's Longitudinal(T&B) 1 86 in2 > 1.25 in2 OKI or(4)#4's i 8- .,,-,#5's Transverse(T&B) 4 96 m2 > 4 92 in2 OKI , • s. Job No Sheet No Rev ..-,hull, T.B.D. 1 RBI SOLAR -- Software licensed to Rough Brothers Part - Job Title SOUTHOLD LANDFILL Ref By Date15-May-15 Chd Client File Interior row.std Date/Time 18-May-2015 08.59 X=0 067 kip Y=•1.140 kip Z=-0 001 kip MX=-0 001 kip-ft ° MV=0000 kip-ft %=0.116 kip • ` MZ=•0229 RIp-ft Y=-1.946 kip -� Z=0001 kip ✓ �.� \ MY=0.002oe kip-ft \• MY=-0 000 kip•ft X=0.765 kip MZ=-0401 kip-ft X=0101 kip V=-0.762 klp g Y=-1622 kip Z=-0 001 kip % Z=0 000 kip MX=-0 001 kip-ft MX=0 000 kip-ft MY=0.000 kip-ft RAZ=•0888 kip-ft \ MY=0000 kip-ft MZ=•0.344 kip-ftX1338kip X=0.090 kip Y=-1286 kip \NN\ Y -1402kip _ p o Z0000kip MX=00Rikip•ft \o - MX0000 kip•ftMY=-0000 kip-ftt';‘)..‘,/o MY=0.000 kip-ftNZ=-1.554 kip-ft _-0 306 kip-ft N re \\`‘ X=0.088 kip St=1.152 kip \� \ Y=-1.368 kip Y=-1 053 ki N. Z=0.000 kip Z=-0.000 kip P \ \ ty MX=0.000 kip-ft MY=0.000 kip-ft MX=-0.000 kip•ft \ \ 'l MZ=•0.300 kip-ft MY=-0 000 kip-ft �JJJb°°/ MZ=-1.338 kip-ft ��j"/ =0 04410 _-0.684 kip =1.026 kip \ =0 000 kip Y=-0 896 kip \ X=O.00D kip•ft Z=-0.000 kip .q ° Y=0.000 kip-ft '6/ MX=•0.000 kip-ft No, 3✓ \ Z=-0.150 kip-ft MY=0 000 kip-ft °\d MZ=-1.191 kip-ft ..----4 \ \ Z=-006 kip \\ Y=•0871 Rip \ MZ X A 000 kip /� MY=0 000 kip-ft j MY=0000kip-f °/ RAZ=-1.168 kip-ft ��✓ Load 7G X=0.503 kip Y=-0 436 kip Z=-0.000 kip MX=•0.000 kip-ft MY=0 000 kip-ft RAZ=-0 584 kip-ft LC 76 Print Time/Date 18/05/201515'51 STAAD Pro V8i(SELECTseries 1)20.07 06.34 Print Run 1 of 1 SUMMARY OF SLOPE STABILITY ANALYSES Calculated Minimum Calculated Minimum Cross Section Design Condition Static Factor of Pseudo-static Factor Safety J of Safety A-A' Northern Landfill Slope 1.9 1.3 B-B' Northeastern Corner of 1.5 1.2 Landfill Slope C-C' Southeastern Landfill Slope 1.6` 1.2 Veneer Slope Stability Analysis To facilitate the veneer slope stability analysis for the surficial stability of the landfill cap, a typical profile as presented in Section 3.1 of this plan was utilized. The interface between geomembrane and landfill cap was considered to be the critical potential slip surface. For the purpose of the analyses, water was assumed to be 3 inches above the geomembrane at the top of the slope and increase to the total depth of the cap at the base of the slope. The slope was assumed to be inclined at 39 percent. The veneer slope stability analysis yielded a factor of safety of 2.2 under static loading conditions,and a factor of safety of 1.7 under seismic loading conditions. 4.4 Conclusions I Based on the results of the stability analyses, the proposed construction of the slopes for closure of the Southold Landfill is feasible from a geotechnical standpoint. The slope stability analyses indicate that adequate factors of safety were obtained for the static gross slope stability condition,for the pseudo-static (seismic) condition and for potential surficial failures through the landfill cap materials. However, installation of a geocomposite drainage layer overlying the HDPE geomembrane liner is recommended for slopes of 20 percent or greater in order to mitigate potential for fully saturated conditions on the steeper sideslopes and reduce the surficial water head over the geomembrane liner. This is consistent with the proposed design as discussed in Section 3.8. •131AG0818804.DOC(R03) 4-6 ATTACHMENT 3 RBI SOLAR UPLIFT CALCULATIONS AND DESIGN DRAWINGS • TYV WHITMAN 1 2 3 4 5 6 7 8 9 10 11 1 - IMI% 1iS H PHOTOVOLTAIC MODULE RBI SOLAR H Total S.Sem.0.9,.......^ ImbYEon•Parts•R•p•n Sem. 5513 VINE STREET CINCINNATI,OH 45217 513.2422051 GROUND MOUNT SYSTEMFAX.513.242.0815 0 PROFESSIONAL SEAL 0•31.0 SEAL OPPLIES TO IMAM RBI SOLAR RACK MODEL : GM-I e" •k� eow. SEOF N G ,gyp o AN 09\ FOR ,• FOR R Oa 0M—S1 SunEdisoii pOFE5S10N= F AT F W SOUTH HOLD LANDFILL ct p _ 6370 COX LANE v ®� CUTCHOGUE, NY 11935 ��•II 9i9 E C co 0 i.14 I SYMBOLS LEGEND SITE PLAN OVERLAY SHEET INDEX . J ci E? ` SHEET SHEET DESCRIPTION � SECTION "!"1 - A SECTION ID 6001 COVER SHEET 1 N 4411) 4 SHEET NURSER 0002 GENERAL NOTESMODIAE SPECIFICATION SHEETS 1i 5.101 OVERALL SITE PUN A COMPONENT LAYOUT NORTH ARROW N 8 5507 RACK SECTION 6 BAY PLAN VIEWS z 5507 DETAILS � I DEETAILIO S801 CONCRETE BALLAST DETALS 2 D 3 SHEET MACER [\ ^/�I 1) 1 TITIF ELEVATION ELEVATION TITLE SLEETTNUMBe 0 RELEASE RECORD SCALE SHEET MACER O M g 1 1 1 r 1 1 1 1 1 1 1 1 t r 1 1 1 1 r I t t 1 -- 1 . RESPONSIBILITY SCHEDULE $ $ $ $ $ $ $ $ $ $$ $ $ $ $ $ $ $$$$$ $ -- 1I I r 1 t i t I 1 t I • 1 i t r t 1 1 t i t 1 -- /1 111 f I 1 1 r 1 1 1 1 1 1 11 1 111111 ----11 - E i t I t I t t I r I I 1 1 1 t l t t 1 t r 1 _ 1 1 I I I I t t 1 1 1 1 1 r t 1 1 1 1 SC $ $ $ $ $ $ 1111 Its11I1t $ 1I11I5II - 11111101111111 • 111 11 1 11I► 1111 11 II► I 4 SYSTEM SPECIFICATIONS -- g Itr11111I1 $ $ $ $ $ $ $ $ $ $ $ $ $1111 NOTE — N. 1 I I I ( 1 1 I 1 I I 1 111 I THIS RUCTION SET WAS PRODUCED FROM DOCUMENTS RECEIVED FROM CUSTOMER ON 05128075 1 I 3 7114/15 SUBMITTAL SET PV MODULE MFR MEMC SILVANTIS M325 _ 11 I ( ( I ( t 1 1 1 r 1 I t I • PV MODULE MODEL N MEMC-M3258YC ARRAY TYPE FIXED TILT2 SF12/15 REVIEW SET1. 1 I 1 r I 1 1 1 I 1 1 1 1 1 1 MODULES PER STENO 18 ARRAY TEl : 20 DEGREES 1 5/14(15 PERMIT SET - M OF ACTIVE PV MODULES 3456 TOTAL N OF POSTS . 357 `s • ' 1 r I 1 I I r I I 1 I r I r $ I t I NOF SPARE PV MODULES 0 ARRAY ROW SPACING 24'-318' MARK DATE DESCRIPTION •1 1 I 1 I I t I I 1 I I I I I TOTAL 010F PV MODULES 3156 INTERROW SPACE 17-0' X TOTAL P/SYSTEM WATTS 1.1232 kW DC ARRAY A2MON I80' 1 V r 1 1 1 I$ I SS I I $$$ (NOT ADJUSTED FOR MAGNETIC DECLINATION) 0 PROJECT INFORMATION f 5 B f I I I 1 1 1 1 I11It Is 1r 1 1 1 t 1 GOVERNING CODE F. TITLE 8 ADDRESS. t gc WWII SOUTH HOLD LANDFILL - IBC 2009/2010 BUILDING CODE OF THE STATE OF NEW YORK 4. WAND LOAD.(MAIN WAND FORCE RESISTING SYSTEM) I • V •120 MPH -- _ DESIGN LOADS. • BUILDING CATEGORY I 8370 CAX LANE t DEAD LOADS. • EXPOSURE C CUTCHOUGE,NY 11935 • STRUCTURE.2.0 PGF 1)140 S — _y� • SLA21NG: 3,0 PSF SEISMIC .�U £= 5.0 PSF S, =0.200 RBI SOLAR PROJECT No. i '+ .... 13 S. •LL _ _ Pt 2. ROOF INE LOAD Sat =0.2088 N '�1 • , DRAWN BY REVIEWED BY. 194 . �. ,T x SNOW LOAD- CTN BS • P =20.0 PSF(GROUND SNOW) • OCCUPANCY CATEGORY I t `} �... Pj•1x4 PSF(FLAT ROOF SNOWS II, 7.00 SHEET TITLE. j ME, ' .- 40Pe • •71.5 PSF(SLOPED ROOF SNOW)) • SIlE CLASS:D A [ C A ~, • • • A. 8 C.=1.OD • SEISMIC DESIGN CATEGORY B COVER SHEET !0 u C,=120 • SEISMC FORCE RESISTING SYSTEM= 1 - Ce=0.91 CANTILEVERED COLUMN SYSTEM • - ,`, .., .` le =0.80 • DESIGN BASE SHEAR V =0.085W SHEET No. I T Ce =0.085 i R =25 G-001 € NOTE GOGGLE EARTHfl IMAGE IS FOR REFERENCE ONLY. EOUNALENT LITERAL FORCE ANALYSIS A 1 2 3 4 5 6 7 8 --________________ 9 10 11 1 1 2 1 3 1 4 0 5 1 6 L 7 1 8 I 9 1 10 1 11 MODULE SPECIFICATION SHEETS GENERAL NOTES GENERALICONSTRUCTION/SAFETY STRUCTURAL STEEL r 47Zg_cc. `•.i.,...w,4i { HSI SL 1 ALL WORK SHALL CONFORM TO THE REQUIREMENTS OF THE APPLICABLE CONSTRUCTION CODE AND THE PROJECT 1- ALL STRUCTURAL SHALL DESIGNED FABRICATED AND ERECTED IN THE LATEST VERSION OF . iia SPECIFICATIONS MSC'MANUAL OF STEELCONSTRUCTION-LIGHT GAGE COLDFORMED SECTIONS SHALL CONFORM TO LATEST VERSION OF -� H ,'F_,s.."` -'r• * AISI SPECIFICATIONS FOR COLD-FORMED STEEL STRUCTURAL MEMBERS. H Toabon Instabon.arts•Repn•Feer ice } 2 LOCATION OF UNDERGROUND UTILITIES SHALL BE VERIFIED PRIOR TO COMMENCEMENT OF CONSTRUCTION InzdBavon•Parta•Repaysem« Y , 2 MATERIALS 5513 VINE STREET J/ • • r + 3 DIMENSIONS SHOWN ON PLAN SHALL BE VERIFIED IN FIELD CINCINNATI,OH 45217 lk a9:sll(1E(�ISOtI a A. ROLLEDSHAPES ASTMA992 OR A572 GRADE SB Fy=5a KSIMINIMUM 513242,2051 �f 4 LAYOUT IS SUBJECT TO CHANGE PER REQUEST AND/OR IN THE FIELD B PLATES ASTMA36 FAX.513 242 0816 I. s C TUBULARSHAPES ASTMA500 GRADEB F,=50KSI MINIMUM , , , 5 ENGINEER SHALL NOT BE RESPONSIBLE FOR THE MEANS,METHODS,TECHNIQUES SEQUENCES OR PROCEDURES OF D FIELD BOLTS(TYP UN 0) OVA J429 GRADE 5 _- _ _ - _ --. 13 „ I CONSTRUCTION SELECTED BY CONTRACTOR E SCREWS 4/12TEKS-GALVANIZED 0 PROFESSIONAL SEAL C - s , ,'IANTPS M33U NI'ODULE,, • a 6 CONTRACTOR SHALL HELD MEASURE AND VERIFY ALL EKISTING CONDMoNS AND DIMENSIONS ANY UNEXPECTED 3 TEK SCREWS ARE TO BE INSTALLED USING A 2500 RPM MAX NON-IMPACTING VARIABLE SPEED DRILLVLTH CLUTCH OUT �smwrvwuwuwnw soar e CONDITIONS OR DISCREPANCIES WLTH THE DESIGN DOCUMENTS SHALL BE REPORTED TO THE ENGINEER PRIOR TO _ F INSTALLATION OR ERECTION OF MATERIALS 4 REFER TO THE RBI SOLAR MANUAL-GROUND MOUNT SYSTEM MODEL GMI ASSEMBLY INSTRUCTIONS-,VERSION II FOR _ ( STRUCTURAL CONNECTION TORQUE VALUES �? .{-0..V..1, 13 A u 7 THE CONTRACTOR VALL BESOLELY AND COMPLETELY RESPONSIBLE FOR CONDIDONS OF THE JOB SITE INCLUDING SAFETY n.EAlt' -atl NJ,�s mod 1'1[,�h5j43a[Ly<.• „ ygtc.. "(�+ ', OF ALL PERSONS AND PROPERTY DURING PERFORMANCE OF THE WORK.THIS REQUIREMENT MALL APPLY CONTINUOUSLY 5 ALL WELDING OF STEEL SHALL BE DONE IN ACCORDANCE MATH THE LATEST VERSION OF THE AMERICAN WELD SOCIETY S s3(0 : I.Y^"'U•�F' term' 1' - p, AND NOT BE UM6TED TO NORMAL WORKING HOURS MIEN ON SITE,THE ENGINEER IS RESPONSIBLE FOR HIS OWN SAFETY SPECIFICATIONS-AWS D11 ELECTRODES SHALL BE ESS SERIES UNLESS NOTED OTHERIASE P ton a•t .,evry u�w p,Z. y� , ` '?r- t' BUTHAS NO RESPONSIBILITY FOR THE SAFETY OF OTHER PERSONNEL OR SAFETYCONDIRONS AT THE SITE s FNE G, •nc2..et,_ G Q ry3�aY 'L%u"'-"Y'. :Sl `i+v-, .-7.. �r!j {,,,r� p`.�( " D 1' ;''R'�1�4, � S. GALVANIZING SPECIFICATIONS-GALVANIZING SHALL BE PER CONTRACT DOCUMENTS gEAFIwrO L'��,3'05,1t4.'r1 3 e.RJ,18Nag"-tb sf.17.7.—,TA', 1,-o 0041. , 8 NO PERSONNEL SHALL STEP OR STAND ON PHOTOVOLTAIC(PV)MODULES(SOLAR PANELS)AT ANY TIME RACK STRUCTURE (.e..4.0,0,.., p,..SS+Y�rsYDJ l�S _, n� _'"� '-+tgIl � AND PV MODULES ARE NOT DESIGNED FORLNE LOADS AND MAY VOID WARRANTY A HOT-DIPPED GALVANIZINGSHALL BE PERASTM A123 GIi _ • iek•^ 11MyV .�� *�,`. -,3 �pp,.' 1 , , B PREG.ALVANIZED MATERIALS SHALLCOMPLYLITH ASTM A653-G90 MINIMUM ^�..„t c11 e� :W•='nom' .F3IA' 11 t "Kz PTYI 9 THIS RBI SOLAR CONSTRUCTION SET IS DESIGNED FROM PV MODULE DATA SHEET(S)PROVIDED BY THE CUSTOMER C ALL STRUCTURAL HARDWARE MOT MODULE MOUNTING HARDWARE)SHALL BE GALVANIZED ,may/��° '„` 'r” CUSTOMER IS RESPONSIBLE FORVERIFYINGTHAT THE PVMOOULE(S)DELIVERED TOSITE MATCH DATA SHEET(S)PROVIDED F-;iP_ � _ [ 3rllLs��,F,6= 1Tum8 + ir^.is3c.a , Jr;"> 70 RBI SOLAR RBI SUARW NOT RESPONSIBLE FOR PV MODULE DIMENSIONAL DISCREPANCIES DUE TO FURNISHED PJ MISCELLANEOUS FASTENER NOTES fn/ --- _ - •J ` - MODULES NOT MATCHING CUSTOMER FURNISHED P/MODULE DATA SHEETS 1 ALL BOLTS SHALL BE THE TYPE AND SIZE INDICATED ON DRAIMNGS op�pFE3510N�/ , l Ddn1� 16% �AP1f,Y fY' - . (' 1000 V UL- SPECIAL FIELD INSPECTION , 2 ALL HARDWARE USED FOR MOUNTING PS MODULES SHALL BE STAINLESS STEEL IHIGH EFFICIENCY-3 BUSBARS - DUALITY • •RELIABLE AND ROBUST DESIGN 1 ALL SPECIAL INSPECTORS SHALL BE RETAINED BY OWNER/CUSTOMER THE EXTENT OF THE INSPECTION SHALL COMPLY 3 ALL P/MODULE MOUNTING HARDWARE SHALL BE INSTALLED AND TORQUED PER MODULE MANUFACTURER'S g quaN WITH THE CONTRACT DOCUMENTS,THE BUILDING CODE REQUIREMENTS AND LOCAL JURISDICTION IT IS THE I SILVANTIS M33U modules are Ault Manufactured m automated state-ol- . 1000 V UL by CSA VOA h OWNEWCUSTONERS RESPONSIBILITY TO CINE PROPER NOTSPICgTIDN TO THE SPECIAL INSPECTORAND PROCEED VNTH TINE RECOMMENDATIONS CONNECTIONS USING WEEB BONDING WASHERS SHALL BE PER RBI INSTALLATION MANUAL-MINIMUM { wet proem-Rag,Solmca',Hrtype CCt 1 these lac lines cer'Uhrd to IS091101mhlenats ARC Musci and hob-toed OF 12 FT-LBS FOR 5116'MOUNTING HARDWARE AND 6 FT-LBS FOR 174'MOUNTING HARDWARE - 1 process with unJorm restsbedy and - and 15014001 for`ughoal Industry' ' cepeanty am 00110part of each module' WORK ONLY AFTER THE SPECIAL INSPECTOR'SAPPROVAI- f, m01 c[TM,once. standards - - F 2 FAILURE TO NOTIFY THE SPECIAL INSPECTOR MAY RESULT IN OWNERMUSTOMER HAVING TO REMOVE WORK FOR THE FOUNDATION/CONCRETE NOTES F' KEY FEATURES QUALITY L SAFETY PURPOSE OF INSPECTION AT THE OWNER/CUSTOMERS EXPENSE 1 THE FOUNDATION DESIGN IS BASED ON ASSUMED Sgamk CC,and ol',er mousey lead?p-IVY MerdoryAUIIne -IEC61215ccr,J.od by TIN SOD to env.,rr lord term operation et 3 PREMATURENOTIFlCATON FOR INSPECTONIMLL RESULT IN AN ADDITIONAL INSPECTIONWITH ALL EXPENSES AND FEES wet ermath Ugh 001,10r lderme last snail,.so'm ceV,to aranetyofl abates PAID BY THE OWNER/CUSTOMER 2CUSTOMER IS RESPONSIBLE FOR VERIFYING SOIL CONDITIONS ARE CONSISTENT VIM FINDINGS INCLUDED IN overate at peek etmaYOV •SCSI730 walled by TLV SID to unsure electron!safely GEOTECHNICAL REPORT VARIATIONS IN SOIL CONDITIONS SHALL BE REPORTED TO GEOTECHNICAL ENGINEER AND Af.aeccd Monncrystalhne 001001',,cher cotuvs,on SIh.e.-' Sinner]outgoing quality acceptance cme s henohmerked to 4 SPECIAL INSPECTORS SHALL KEEP RECORDS OF ALL INSPECTIONS RECORDS SHALL BE FURNISHED TO THE OWNER, ENGINEER OF RECORD RESPONSIBLE FOR FOUNDATION DESIGN PRIOR TO INSTALLATION OF ANY FOUNDATION MATERIALS Textural glass whit AnlMonw[ne COalug IARCI forzupener Industry standards ENGINEER OF RECORD AND LOCAL JURISDICTION AS REQUIRED ANY AND ALL DISCREPANCIES SHALL IMMEDIATELY BE energy product,rn .0.1703.1006 VI haled by CSA for Canada mnl USA BROUGHT TO THE ATTENTION OF THE CONTRACTOR CORRECTIONS SHALL BE MADE AND A ANAL REPORT OF INSPECTIONS 3 CUSTOMER ISRESPONSIBLE FOR VERIFYING CORROSION COMPARBIUTY ATH FOUNDATIONS AND/OR DRIVEN POSTS , - •Po1M0 power,nlerallre proal,111010,04 power out4+.t CO nla•Led end CEC haled SHALL BE PROVIDED NOTING COMPLETION OFINSPECTIONSAND CORRECTIONS OF DISCREPANCIES FAILURE TO CORRECT Withstands loads to 10 5400 Pe as tewMd to IFC s-anderds DISCI1EPANOES SHALL BE REPORTED TO THE ENGINEER OF RECORD AND THE LOCAL JURISDICTION AND MAY RESULT IN 4 INSTALLER/CONTRACTOR SHALL COORDINATE PLACEMENT OF FOUNDATIONS AND/OR ANCHOR BOLTS PER DESIGN Non-emraduuU aradwM elumm.am frame for n,g3ea•,vss LINEAR WARRANTY INFORMATION REMOVAL OF COMPLETED WORK AND ADOITIONALWORK TO CORRECT DISCREPANCIES AIME CONTRACTORS EXPENSE. DRAWINGS AND/OR MANUFACTURERSSPECIFlCATONS C 7i Modules eolb a nano of pews.oettx,t..:tube •10yno•Ir Iced•arrenry,or motavls and wetkmen1hq 5 RBI SOLAR, DESIGNS DRNENFILE AND ALTERNATIVEFWNDATONS BASED ON SOIL PROPERTIES OUTLINED IN O i Hugh PD Beast.. -25 yew/near power werranN rwih cave,a50 for pave-loss 5 AS REQUIRED(BY OWNER/CUSTOMER AND/OR E O R),MINIMUM INSPECTION SHALL INCLUDE a.....1 •I Local mawlacnrnn3mC000UA Europe smatter Ilan 359.0 tY lust year and 07%do9•ada'on per CERTIFIED GEOTECHNICAL REPORTS AND/OR DATA FROM FIELD TESTING.ALLDESIGNS ASSUME UNDISTURBED SOIL mood-,Inner 51 STRUCTURALSTEEUALUMSNUM CONDITIONS,AND DO NOT TAKE INTO ACCOUNTTRENCHING NEAR FOUNDATIONS FOR CASESWHERE TRENCHING FOR2 -its -Se, Ur MEMC ELECTRICAL WORK IS AT OR NEAR FOUNDATION RBI SOLAR RECOMMENDS A MINIMUM OF 3'-0'CLEAR FROM THE EDGE OF �j] MODULE FAMILY A. FABRICATION THE TRENCH TO THE EDGE OF THE FOUNDATION FORTIORMALG000 SULCONOITIONS'IN CASES OF POOR SOIL' E,, CI- ,1 6 E SILVANTIS SERIES -M3066vC,MEMCN93i0By0 • MATERIAL IDENTIFICATION CONDITIONS RBI SOLAR RECOMMENDS A MINIMUM CLEAR DISTANCE EQUAL TO OR GREATER THAN THE DEPTH OF THE ® 0 = f MEMC-M315BVC,MEMC-M320BYC, • HIGH STRENGTH BOLTS-MATERIAL IDENTIFICATION OF BOLTS,NUTS AND WASHERS FOUNDATION IF IN DOUBT OF SOIL CONDITIONS,RBI SOLAR RECOMMENDS CONSULTING A QUALIFIED GEOTECHNICAL -• a MEMC-M325ByC MEMC-M3308yC • WELD FILLER MATERIALS-IDENTIFICATION AND CONFIRMATION OFCOMPUANCE WITH DESIGN DOCUMENTS ENGINEER TO ASSESS SOILCONDITIONS AT THE SITE rr/^� cVV sG�a 7'NeI For Inure lnlon„atbn about SanEtlloon SILVANTIS-Modules. S ERECTION• WUERIALLDENTIFICATON NOTE TRENCHING/EXCAVATION WITHIN 3,0-OF ANY RACK SUPPORT POST REQUIRES REPLACING THE ORIGINAL SOIL AND VJ V phase vert wwwaunednon.mm COMPACTION TO NAN STANDARD PROCTOR DENSITY FOR FURTHER CLARIFICATION ON COMPACTION REQUIREMENTS RBI S em_i -'^ INSTALLATION OF HIGH STRENGTH BOLTS SOLAR RECOMMENDS CONSULTING QUALIFIED GEOTECHNICAL ENGINEER +� • WELDED CONNECTIONS t • MEMBER SIZES AND PLACEMENT ot 1 g • GENERAL CONFORMANCE WITH DESIGN DOCUMENTS lad t..- ,..,.•_ _.. , _.. ___._ ._ - - - 52 CONCRETE CONSTRUCTION ETLCLASSIFlED 1 SILVANTIS„ S©LAR MODULEagial° MATERIAL IDENTIFICATION THSPROJECT CONTAINS RACKING LABELED ASETLCLASSIFIED UNDER ULSUBJECT 2703 LABELS ARE APPLIED AT THE FACTORY 8 MIX DESIGN VERIFICATION ON COMPONENTS THAT MAY BE ASSEMBLED AT THE FACTORY OR IN THE FIELD SEE DETAIL SHEET IN THIS DRAWING SET FOR MORE 1 SIZE AND PLACEMENT OF REINFORCING STEEL INFORMATION. 8 D -q--r PLACEMENT OF CONCRETE USING PROPER TECHNIQUES p g ) CONCRETE SAMPLES FOR SLUMP,AIR CONTENT,TEMPERATURE STRENGTH TESTS ETC IN ACCORDANCE 1 M330 SOLAR MODULE DIMENSIONS pncnl • C MN ACI 318 li Modula Dunertal«s Cm+el ngth Si 1 PROPER MAINTENANCE OF SPECIFIED CURING TEMPERATURE AND TECHNIQUES A-gob ten0 D-3e1121 0-I,(100r•-ea1 F �C B-'9,s r-6` E- -U a 53 FOUNDATIONS G -I'r 2<R9r -t rs11 -I 9a,1•Ya.�ae 6MH E.�4:1in.IIP ISL D c-segs ! : "7-,— _ �I • SIZE AND LOCATION OF FOUNDATION EXCAVATIONS 01 A. a RELEASE RECORD § Maufng Hoke Spumes i ' -Tr • PLACEMENT REINFORCING STEEL REQUIRED 9 ` ( F 95113:01 G--,IFAIA.=t I j _1 ri - —� WORK BY OTHERS 1..,.m05HIAUStrmaye,....,aye , —— t ._T_ —_—_ _. { I H -- PHYSICAL PARAMETERS,W„y�'F«•~ -,..,. i R. L'—'I rl '-H-- 1 SITEWORK AND DEVELOPMENT -- r. 7 1 I r �E_ $ Pk fete.St " • Ila I �,o..z noma•e�ue 2 ALL ELECTRICAL WORK INCLUDING WIRING CONDOR,PANELS AND LIGHTS TO BE FURNISHED AND INBTALIID BY ELECTRICAL --I F ..[^""-'11'-'T- —1'sAALacccI .0, .?,e`- I ' II ��� CONTRACTOR i 1-C1^LN^'ra a A� ^i•^TT•^.'- iI ( 1 I 3. GROUNDING REQUIREMENTS —— iC Ra,i:�-___.. -1 aaTowerwnic a,,, I " I Ha Itl I C. -- i-',TEMPERATURE COEFFICIENTS AND PARAMETERS' I 4, ALL SHADWGANALYSISAND/OR PRODUCTION ANILLYSIS SHALL BE PERFORMED AND BY OTHERS RIA SOLARIS NOT 694 i l -- 1 I A4 RESPONSIBLE FOR PV SYSTEM DESIGN AS IT PERTAINS TO ELECTRICAL OR P7 SYSTEM PRODUCTION. Sic"'' eco , ...-1.- -�'.J,n,^-�y.,^. } Ass 1 l -- `•"rX',3+$'4TA::i0.'u, i•l i'1,'30, I Y.)N NA 3 7/14515 SUBMITTAL SET I ,„-r„-,,--,....„..„. Ueda 1 µE 0 num's,ocS 2 SZf15 REVIEW SET S a? (y.'ST.+-„�- -,at�r�:'tL .-' zsy. beamedrj7 1 5/14/15 PERMIT SET MARK DATE DESCRIPTION H ELECTRICAL CHARACTERISTICS' II C�- J F-wr�. �N x-,-�.-' o RACK SYSTEM TOPOGRAPHIC RELATIONSHIP a PROJECT INFORMATION S ems-tin-—. ,t. -06 a,e- J:5 e:L 325 ST. 1 , ke..,v. ..._ 056 ^064 `Y9 -a6A: 06 . r 2 „B 87",tr-ePeT ,.h. _Jam arc 9W era 9+a e a • P TITLE&ADDRESS g L , -,- , 4les lOs. .1S,. ,16.1”-_mT_ use- SOUTH HOLD LANDFILL [ Pa.L0B1.:54x, r 9'000. a6, 1., Jae 3t, a-e j B.k-r _ C,r.1 o,>aw,. 1u.;- eu-e 1. c ' _ urs,`.a.,G A •' - -' LEVEL UNEB RACK SLOPE LEVEL UNE LEVEL UNE ..-.w:r-r--,a••.cas v.�vn .a. �^ .. _.sn., g6 i t0,Aa,-•<ruua.•v,rr..0..r.R"r.�v.rm, -�, •a.,. ___ RACK SLOPE VARIES RACK SLOPE . 637OCAX LANE € v°, IV CURVES AT MULTIPLE IRRADIANCES Rs CL IV CURVES AT MULTIPLE TEMPERATURES IIa44w,m1 ==_==�--==_ ---F�t ------_ CUTCHOUGE,NY 11935 I 109 i aI---— - =c+- `� __ -"' 00 �I II it -`�r j) I� RBI SOLAR PROJECT No _ a r t —e5 V 153146 m -^""' a 4\t _ �O `.0 DRAWN BY REVIEWED BY S - N S,H _"'_ I-1 '` —zc KEY PUNTS KEY POINTS KEY POINTS v- 1 TOP OF STRUCTURE IS LEVEL 1 RACK STRUCTURE IS PARALLEL TO AVERAGE SITE GRADE 1 RACKS RE IS PARALLEL TO AVERAGE SITE GRADE CTN BS F ---'N.4 L 2 COL LENGTHS MAY VARY THROUGHOUT 2 COLUMN LENGTHS ARE EQUAL THROUGHOUT 2 COL LENGTHS ARE EQUAL THROUGHOUT SHEET TITLE 3 t .` lit, 3 SED PER HEIGHTS MAY BE EQUAL DiROUGHOUTORMAY VARY 3 TOPS OF HERS FOLLOW AVERAGE SITE GRADE 3 S OF PIERS FOLLOW AVERAGE SITE GRADE tua., GENERAL NOTES/ g A n s e 1, arta, 1. - _ - gym- v ro 4 EXPOSED PER HEIGHTS MAY VARY EXPOSED HEIGHTS MAY VARY G MODULE e - SPECIFICATION SHEETS s _ „ - _•-> - me, ... FLAT PLANE FOLLOW GRADE FOLLOW AVERAGE GRADE SHEET N0 3 _ _, t • G-002 i 1 2 - 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 a 9 10 11 N •,,. 1...-----,-,...- •wd! ',..'41 SO R LA ......, H w 40 B H 7...Senece Dmok•F.eakok Instriebon-Parts-FrekarSenk. 5513 VINE STREET CINCINNATI OH 45217 S 513 242.2051 FAX 513.242.0816 o PROFESSIONAL SEAL o R. , 7.1:1-_,. - .1.02115..APPUES TO LIMN OF STMT..COPOOKEHISONLY f1:1542{hl'72 I 5P2 ft 5P2 Ifil5F2 fra 5EP2 til 5M2 '5P2 V 5P2' $5P2. '5FP711I 5'1:2 fl ii t.5P;P4P2{1}4P2414P2 5{P---- 43 0 I 52,2%." G ....1 CB _ CB CB CB 03 4..OF 174 G ELV 2 flkiip2fisa'sp2' 4 5,;IT 6.77.--'-'-{II-•.1' F7Tri- : -Ili''t- 'n5P2-4 5P2 IIISIn fr;:ff4n5.4P2Cf2 '5.172{1------------------ 1.10__DULI5C) 42:e°AH4t.N ' i* R ...I.., •_,• ,,, . 5P2 Lio.F2 u 5F2 ,5P2 I 5P2,LJI 5P2 U 5P2 5P2, 5P2 i 9'2 8•4- . .4 I...- ca c8 ce ce CB CB ' -I'CI VS' ' • ri, Inn _ 25211011ULE . III 5WP2" IHIP12,,. 5P2 4:P2t I ill 5P21 9'2. '6P2 E6P2'-6F2 •fli 6F2 IM,67'2'11 •6P2 {11'CP2I ni 6P2 fihn i,_ 15{:172 iI-5P2 TJI5P24I 5E2 IL 5712 II5F-hf.I0F----------- „ . .1.7 03.0 OL.....1 / I 42,10Y2” \‘‘?".9CIEISS10e/ ....1 CB CB ., , CB , co ' CB CB n. . , fly , I]5/72. M2 '5P2 ,5F2 41..2, lz"2, 6P2,fi.72 VI 6P2 0 en 0'6021 fil.6P2 LI epi'' 6P2t '72 fl 6i," it 5P2 fl 572 T1 72'ft 5P2 fl'4,GI;gpi, 5.2n 252 MODULRe [.. 49,1040" CB CB CB CB CB 1 ,I I fir ,-fl- riril , ,i cl-' Fr, n , , •, , , ___.____ 234 51013_11LE_540 5M2 1 9?2.0 R3'2 t 5P21 LI;571 72 ,72 6F2' '6Pi Ei.2 fl.WIII2 fill GPI 11-6P2 fl I6F2 Li 72 T..J1 614.T.i:6F-71'5P"2 1154 11:i''2 PI- F 1 I CB CB , CB CB CB . Z t1115NIii I s'h-, '-'63•2$'•ri2 fli ifl tr5p-Itsp21 0-; fl ,:i.; 72-0-6-k g—0 fil5A1,2 AL5P2:til,5P2':t5P2 II 72 fiT7H2', 5P21 4...Al!'.-,;2. -5P2: 5P2$511,i,t 5P2 fi-5P2' $3445EFII til------ 62-1MULESO O/ Z --7....-1 CB , 1.,.. 343.0"L-OMOPIRES --flainC8 4 cs 03 CB CB M C ! 5WF2 ,5P2' 5P2 1 72 ;. 5F2 4P2 4P2 5EFI - "4 ' ) '2 4,, 1' I ' 126 MODULES() -144,9Ye WA ip,$iitip2. ,,,2 -J.-2-$,if:..2 i:2,.'I 4i2.11.47.2 4P2114P2 5iF1:2fi 0 Ce) 1 1..., '!g._...,' I.. x___CB CB VERIFY IN •v,..=i / di , FIELD I 51,2xe 2B90 MODULES I CB 41.. 4,L FC.i:F --hin17-2C8 '51,472 tin tP -pi-111;iiifillijp:27-41;2f72' fr7-77'6'' $'..v L$_.,_'og,._1_ fl;1 .,til E 11,6%,,,," . 5i72 ,5.1;2 5P2 5P2' ;5F2 72 4P2 72 5EP2, 1728 MODULEN S TOTASL 0 E I 1 al CB CB 0 0 = I a = Z On CB CB CEI CB p 5P 4 1 , .2 ,, ,, • c . ,_ c,. ill 14 g ss C)1 1 CB CB CB CB Ce , , t 72 5P2.. fliili 972,. 5P2 ft4F2 flII4P2 I fnl 1 ' _,72 1, 5P2: 5,2? ,5.P2 5P2• •q,5P2,fl 5P2 5P2, . ' i 5P2 , 972 CD . [ 47,4%," , _ ce CB CB X-BRACE SCHEDULE SETS DETAIL I ®162 MODULES ,..."' -- ' di- , ,,, ',,I 'I Ir-II.'II 'T' 1 T Hr.' 111 1 t' Ill 0 fl ''fl I--E --t i 1 -n- .flL ''tli'-fr-fil ''U.- fl- :71' SYMBOL DESCRIPTION I. a I D 5WP2 5P2, ..5P2 ,51,2_ 54,2, 5P2, '6F2• 6P2 .6P2 I 6P2! ;72, ,,5.11 ,5P2 72; 5EP2 '.---S_5---: 2 STRANDS OF 22,0'LONG me's S 7619 D 07/5.501 1 1... 36-6W , IMRE ROPE WITH 4 CRIPPLE 4/41MRE CLAMPS " •Fri 0 j*-2 MD U1' ---------------‘tri,,,tV-,,2.tr,:t fly _f: u,,.,: Es__ E, , .iii5EF2,I I] !6P2 _6P2 .,172_ 5.PZ I r5P2 9,2 5P2, g I I _ s L 48-1%. 5 T,- S RELEASE RECORD 1 I CB CB CB CB ce °2 t r 0 150MONI- _-__-______ni I I'10,I I O' I' El L I.,I II], 1,n!!!.frif.'r IT _AI ... ,':' '1. III-...Ill!:Fn: BALLAST SCHEDULE -- 1 I ..-; SAP2 .5P2 .5P2. 5P2 1 ;5P2' .5F2 5P2:. I 6P2',._'6P2. _'6P2 , 5P2• .72. 51,,,2,,, 5P2, L502 172, SEP2_ - 38-11X." I CB CS aL SYMBOL MARK DESCRIPTION WEIGTH PIECES DETAIL 1 . . , . ,, CB ,, - 3.3 01§LIKLIDIR ---___-_-____ ' rr,''' - ill.- -oh- , _i!,,.' 41. 11.!'4-1 L $ $ In!. LI; 9.6" 3,8'6 20*RBNFORCED A2/5.301 E A CONCRETE BALLAST,W/(1)9 7/0 8,(1) 10450 157 Ali.- tpl in.u,`F;2' til_4,2_4?n-: 72' 6P2 U'6P2'LI,6P2 U 72 Ul,5P2 5P2 5P2' 5P-2 5EP2 U 36 7/01N666 5 POST AUS-601 1 O I 313,11).• I c8 CB CB CB -,' 44.0 6 3,362,0 RENFORCED A2/5-301 -- 1. a C B _36C07N/sCRETE.wwBALLAs posTST7 .8,(1) 9263 130 Ass.%0, C _ 1 _ _72 44.1 5P2, 5P2 5P2, 5P2 6P2 6F2 6P2 6P2 1 6P2 72 SEP2 1... 313,110 ,.., - CB CB CB 9.0 6 2,6*6 2,0 FtEINFORCED 36 7/0 W666 5 POST 70 ANS301 & AUS.601 -- _ 8 0 126 1AODUIES ' cil •1 • ! ', i i , ; • , ! --051.72 r712_CB 72$.542 II 72 I 721 : '6P;fi 6P) :72 157i 6,2 4: 45,2{ 512 I 3"Ye I BALLAST SETTING NOTES 1 ALL BALLAST DIMENSIONS SHOWN ARE CENTERLINE TO CENTERLINE OF BALLAST 2.REFERENCE SHEET S-001 FOR ADDITIONAL INFORMATION ON REQUIRED BALLAST -- j_7/14/15 SUBMITTAL SET 1 I 2 5/22/15 RENEW SET c8 CB , CB ; I 0,08.09_,. .__________________Hitripip:sp!,,—i$T,,2.$.i..p.,.3,11:::111;.p;,tkp2.11;2 44i2',9151th. ,{,11 1 5/14115 PERMIT SET c a 1 MARK DATE DESCRIPTION iI , ES CB .I I' ! OD 7i2725108 DOLES -----41.6.4,-i7 p 5-p-2$•iii, 5,,, 554 BAY SCHEDULE , 13 PROJECT INFORMATION 1 B BAYS PURLINS DETAIL SOUTH HOLD LANDFILL B TITLE.4 ADDRESS I TYPE QTY. POST-POST DESCRIPTION MARK LGTH. 4/BAY PCS. 1 t• 4P2 2913,4 17 SurEdmonlAEMC-4.1325SyC PORTRAIT MODULES 4 IMDE 6 2 HGH ZO 160 1/4" 4 116 01015401 5EP2 23 16,8 i iii r AND 20 0'TILT SH€81son MEMC•81325ByC PORTRAIT MODULES 5 WM 6 211IGH nE 240 9/16' 4 92 6370 CAX LANE 1 1 BATH 1 CANTILEVER EAST SIDE AND 20 0'TILT E8/S.301 , 1 . 5P2 200 16,8 11116' SunEcToon MEMC-FTS25ByC PORTRAIT MODULES SNIDE a 2 HIGH CUTCHOUGE,NY 11935 i 25 200 706' 4 800 EIO/S.301 AND 20 0'TILT 1 -. SunEftsan 80.4G•13258yC PORTRAIT MODULES 5 WDE 6 2 HIGH g 5WP2 23 16,8 11116' WITH 1 CANTILEVER wEsT SIDE AND 26 0'TILT 237) 24/IS/IF 4 92 G815.301 RBI SOLAR PROJECT No 5p, 59 20,.0law Suck.,.•E .n1AEMC4.132564C PORTRAIT MODULES 6 WIDE 6 2 HIGH AND 20 0'11LT 26 2405/10 4 236 0105.301 153146 .1, NOTES THIS BAYDRAWN BY REVIEWED BY 1 4 1 PURUNS ARE 2 3/4'x 8'62 3/0 Z 16 GA.GALVANIZED UNLESS NOTED OTHERWISE ' CTN BS ...,. 2.TOP CHORDS ARE 131 7106 0 SO.14 GA-GALVANIZED UNLESS NOTED OTHERWISE ' SHEET TT1LE i '2.- 3 LOWER KNEE BRACES ARE FIT Sa 15 GA.GALVANIZED UNLESS NOTED OTHERWISE I A 4.UPPER KNEE BRACES ARE 0 6 T SCL 15 GA.CALVAMZED UN.LESS NOTED OTHERWISE A 4 COMPONENT LAYOUT 1 - E 1 ' SHEET No i A2 S 1 0 1 1 Weil . COMPONENT LAYOUT . . k! 1 2 3 4 5 6 7 5 9 10 11 1 1 2 I 3 1 4 I 5 1 6 1 7 1 8 1 9 1 10 1 11 16'-814, 2O-OnAs LENGTH DETERMINED BY LENGTH DETERMINED BY r ",A .F.•,•1. PV MODULE DIMENSIONS PV MODULE DIMENSIONS J �% IN PORTRAIT ORIENTATIONy11 r IN PORTRAIT ORIENTATION i -- -®®® 4 POST POST 4.POST &POST R X1 3 1 SOLA R H TAaISoH,SeM Dngo FabetAon H — — _ — — — — -am awe�.,. aW 4) aL4 5513 NNE STREET -I- CINCINNATI,OH 45217 513 2422051 iFAX I Cr 1324 20816 25W 3) 26 0 PROFESSIONAL SEAL z W 2) Z8 2 w INEEVS SEAL waco.o'mE°n°Gow6i � Z5W 1) _,..IIII 0 /4.OF NEwk G I I I I �D °o9*f 7A 1G7 (5)MODULE WIDE BAY W/ G9 (6)MODULEWIDE BAY (*_41,i‘ . A. jI, 1, • (1)WEST CANTILEVER PLAN VIEW ,�";-0• PLAN VIEW 0,, 01_2_, / 16•-8116 16'•81ye• LENGTH DETERMINED BY LENGTH DETERMINED BY PV MODULE DIMENSIONS PV MODULE DIMENSIONS 1F 'E IN PORTRAIT ORIENTATION I t� y_ IN PORTRAIT ORIENTATION POST &POST POST &POST F , MIFrye ) --H7— —� _� IIIIE' 11 _ Z ®, 12•-3K' II -- r 3••4,X 6'.231; 2.8'/1a aE m Cen -I-aE ) �� ® �j 1 T § E Ce =y ZfURl1N I I I I E. ® U. p1OBNSPt10N "10''�n �T PURUN Z I6 CT �0 BRACKET 6 15A,�EN NgMp°a1� __ 15 E9 (5)MODULE WIDE BAY WI E10 (5)MODULE WIDE BAY . g °L1A 510 1- TOP 1u"-0•I(1)EAST CANTILEVER PLAN VIEW , PLAN VIEW o 1 0'''' VS �' 1 1 ./� CHORD N o e� 1 y Ce 1 ENG�O�0.M1NE0 �,1'l‘ , 1 1 LE MODULE DETERMINED MANED BY QO , ; fiI.� 1 NS Q F IN PORTRAIT ORIENTATION 1 i 1 3.103Ie °.11 moi. '' ••... ,.4 'L POST POST U 1 II $0% I 2413 D RELEASE RECORD 01110.11111. I T w _ w I 5 b Z ••O n MOUNTING ¢ Z/Q— — —— •• POST(TYP) _ — E l t X11 —— lc a I — — — I ` -- i -- - g UNE OF C10 (4)MODULE WIDE BAY 3 7/14/15 SUBMITTAL SET I a GRADE , PLAN VIEW 527115 REVIEW SET f 5 1 5/14/15 PERMIT SET s $ MN/I)DATE DESCRIPTION REINFORCED CONCRETE BALLASTI/ SEE SHEET 8.101 FOR LOCATIONS SEE SHEET S-601 FOR DETAILS I o PROJECT INFORMATION - 8 B SOUTH HOLD LANDFILL ! I ITLE 8,ADDRESS B +I 4 6370 CAX LANE I 1 qJ CUTCHOUGE,NY 11935 y RBI SOLAR PROJECT No• 1 I E153146 E DRAWN BY REVIEWED BY i CTN BS s I SHEET TIRE. i 2 A d A RACK SECTION I • 8 BAY PLAN VIEWS s SHEET No_ 'a 5 5 A2 S-301 I m. RACK SECTION x 1 2 3 4 5 6 7 8 9 10 11 1 1 2 1 3 1 4 5 1 6 7 1 89 1 10 1 11 11/111 1111111 ,r1/IIIItt1111/; RBI SOL ' R H Tl Soto Semesa Seen=Despn•Fada H rhNtpIaton•Pana•Repan Sema 5513 VINE STREET CINCINNATI OH 45217 5132422051 FAX 513.242.0816 '- O PROFESSIONAL SEAL - 1 0NEER-11® INSTNLL WE S AND O RI LABEL NTED 9 ® �s 1 FACING UPAND ORIENTEDW IRE1iD COMPOP m°10 aar SLOTASSHOVM I I -LME OF 3R'OW • �� I' RECTANGULAR PINCHED PV MODULE HOLE(SLOT)IN PIRUN BELOW G ® THE 4 WEEB'LEGS SHOULD C' p'V�pp A>t Y ®�USTED° CONTACT EDGE OF SLOT - _ iy'`•�rj1' ...:7.. ^' OO91. NOTE WEER SHOULD FIT SNUGLY IN SLOT ' 1 I r �< /� 1/4'X94'HNSS.BOLT 1■1 ',,./a� o: FOR USE WITH 5116'HARDWARE(1 PER PV MODULE) �� Iessa25xo7sHxas] _ • z4mRLN PER BAY SCHEDULE m i. NFEB-UIR�"�- � 1111190 ICx rv4•HHBA Baia �o� os� INSTALL WEEB VATH LABEL j NUT(IYP)I2GBSOX,75HM ORIENT OFESSION/ �_,���• FACING UP AS SHOWN r,, ,, jjJPP1' � 5 WASHER AS SHOWN TO ALLOW MODULE LME OF 318'x 314• I HARDWARE INSTALLATION OVALEY RECTANGULAR PINCHED �• HOLE(SLOT)IN PURLIN BELOW PV MODULE FRAME I I (2)ETL CLASSIFIED LABELED -421-43)-1 ---- PIRUN BRACKETS PER WEED SHOULD WEEWAIR II tl ROW INSTALLED AT EYE -- ORIENTED UP TO EMBED IN I a LEVEL AT BOTH ENDS OF us�m PV MODULE FRAME �� ItEL-WEEBLIR] F SEE DETAL F`5/S501 'I f EVERY ROW f NOTE WEED MAY ROTATE DURING FASTENER TIGHTENING '� ' -�1' -BOLT ORIENTATION SHOWN TO FOR USE WITH 114'HARDWARE(1 PER PV MODULE) 2-PURll11 PER ' ALLOW PURLIN TO BE USED FOR BAY SCHEDULE }_}--In - RARE MANAGEMENT PURUN_ _ F5 WEEB PV MODULE 1"�Na5 EN0�WA ER r I� MOUNTING BRACKET l ' Sr-N:4:I BONDING WASHER DETAIL AA — — — Z 1M'SSFLANGE NUT 6� U IWUT25SSFL] ,7x BOLTS FM NUT(lID 7 TOP CHORD PER THRU BOLT 8 NUT mPJ BAY SCHEDULE 12D7� ® ; b CHORD DAOUNTITOP cam{ 9 �1 s BRAACKET 7011 O P,-,:: / 70P CHORD PERr T y® BAY SCHEDULE E. IX C='7 E (2)17 xSEM GALV - 0 TIARA BOLTSNUT Oil - - O 2 = I • ,KROH • ''/^� SFS ( BOLT&NUT(2GB50X125HH] p_.T.. pep._ SCHEDULE T PER OST V J n (1 P17GALV WASHERS l;1 ,.M E7 PV MODULE TO E9 TRANSVERSE PURLIN �`' NMI 'III . F PURLIN CONNECTION DETAIL CONNECTION DETAIL 0 II ��� 1 J � (2)ID GA.GALS EXTENDED S e — POST MOUNTING BRACKET II (2)612 x1114'HOOD l w'J 1 7020 TEK SCREW V 5 II (2GT12X125HH45] RACK STRUCTURE ■A. 3 �I E -- POST PER POST SCHEDULE Ti 0. 8 D ILAI %.BRACING PER 1 P 9 NOTE INSTALL TENS LAST AFTER POST TOP ASSEMBLY IS SQUARE X43RAGNGSCHEDUI.EI —8 S D5 TOP CHORD TO POST m S8 TCYo RELEASERECORD CONNECTION DETAIL _ UNE OF GRADE OR -— I ET TOP OF BASE PATE -� AI - g 8§ N ® Y• USE U4'THICK SPACING PLATE AS -- F --I a NOTE CA IMING IS LOCATED ON THE 4 GRECTEDPAINSTALLATION MANUAL DOVM SLOPE SIDE OF THE REAR TO MAINTAIN O VS INSTALLATION MANUAL __ POSTS. INSTALLATION C €- ,� :C W MODULE(TAPJ 3 -— t .111 1111. SCC7E X-BRACING `� 17x1114'HH GALVANIID 3 7/14/15 SUBMITTAL SET ,7=1C ELEVATION I� rlBouaxurmPI z nv15 REVIEW SETII I2GB50X,25HH] I1 5/14/15 PERMIT SETsIIMART(DATE DESCRIPTION iiE1 n�==J I I II BBaayySdImUIE 0 PROJECT INFORMATION 3 POST PER POST II6 TITLE&ADORE55 ! 6 gSCHEDULE PURIINMOUNTING SOUTH HOLD LANDFILL c G II ® I BRACKET]S7045] § p BEHIND k z INSTALLED INFIELD CORS.LED IAN 0114 I I 6 �_�- 6370 CAX LANE 7 l3 HOLE WITH Y4'MINN.EDGE DISTANCE o _IE ,I■ CUTCHOUGE,NY 11935 GRIPPLE 114 61 1111.11 I I. 17 x S HH GALVANIZED RBI SOLAR PROJECT No ,- - THRU BOLT S NUT _ ? WwE CUMP S (TYP)(2G650X500HH] 153146 DRAWN BY REVIEWED BY I �- TOP CHORD PER CTN BS _ I- BAY SCHEDULE SHEET TITLE: 6'MAX j IIIIEII II■ A 6 a - kA SIL� I■ DETAILS o NOTE. %.BRACING IS LOCATED ON THE DOWN SLOPE SIDE OF THE POSTS s 6 A7 X-BRACE TO POST A9 LONGITUDINAL PURLIN DHEETNS-501 i CONNECTION DETAILl CONNECTION DETAIL 1 1 2 I 3 1 4 I 5 I 6 7 I 8 9 I 10 11 1 1 2 I 3 I 4 1 5 1 6 1 7 8 1 9 1 10 1 11 1-iii0 -;.41 (_/, UFT ANCHOR p5 ' RB! SOLAR H (TBD) S H Tols,Sobs m. •van••�Rew sea, n 8i 5513 VINE STREET r I CINCINNATI, OH 45217 FAX 513 2420516 os o PROFESSIONAL SEAL I Of 51111.141110.40WPOWENTS ONLY I_ r MIN. Y MIN 3'MIN 3'MIN 3'MIN 3'MIN zhe COVER COVER COVER COVER COVER COVER 7 0 Co ---- B-6 ' In0 U A,Vt.OF NE to , GB BALLAST BLOCK LONGITUDINAL ,, ICI - •%�`/ 0 0�. o e o scall 0 9 �a 1E11I I ,.,,.,. SECTION DFESSION 'iv C, N fJ ! . \ F r I F. __ FlF3 BALLAST"B"HORIZONTAL F8 BALLAST"C"HORIZONTAL ® Cs I— + t � BALLAST "A"BLOCK HORIZONTAL H ,•_t. SECTION ;`.. SECTION ; SECTION Z ® p ® j Z can 5 D8 BASE PLATE/POST SECTION M — n" I 3,_3' n I 2'-6' �V scnlE O 0 7•.1'-0• DETAIL e s _L — • Ce i II II II II II II a II a II I II II —+-7— 1 D W II II - 11 II " W6.B 5 POST w/ W II II II II W6.8 5 POST W/ W II I II II W6x8 5 POST w/ D I fl ==• II �� — PLATED BAS II — JI Q,� WELDED SECURED 1 — Pf.ALTE SECURED I ,�W6x8.5 GALV.POST d� �-t�v PLATE SECURED df IIPLATE Ir���e II II 1°:e, 11 TO BALLAST OCK II 11 ° p? 11 TO BALLAST BLOCK II I I p,p I II TO BALLAST BLOCK B'xB}!4i-BASE 2 11 II II II Q, II -II : II - II S ' II I II: II.• PLATE WELDED TO 5 '. `T '( , , POST a RELEASE RECORD € II _ _ II ©_ u _ _ II II __ II__O_'ll . __ II II __�©° II__ II 1 .11 ii� X.P ATEUDTWASHER _— - -lI II 7. i—�I 'III,-II WANUT SHER/�•LEPLT F ii. II II II 1 ii = II II II_ II II II I II '1\ Pi 71 _— IL II II • II II _ II II -. II II I II -II - T THREADED ROD —— I S C = (8)/C5 TRANSVERSE _ .}1, (8)#5 TRANSVERSE (B)#5 TRANSVERSE ANCHOR, 12'LONG w/ _ _ . g' = — ,= = BARS;TOP&BOTTOM _It — �I —11= — lr BARS,TOP&BOTTOM II =I- �I— BARS;TOP&BOTTOM 8'MINIMUM EMBEDMENT _ II II II II (EQUALLY SPACED) II II II II (EQUALLY SPACED) I. II I II. II (EQUALLY SPACED) (2TRSOXI2) -— 6 I m II ' II II II II II - II . II. 0 Ii I II II : C9 POST/BASE PLATE =— I a _= IL=1 __ � AL =JI—_ =IL = 1. 1 _ =I= it, ' SIDE VIEW 3 7na15 su6Mn1ALSEr 7'=1'-0' 2 5/17/15 REVIEW SET 5 II. II II IIII I II ' III °$$ II II II - II1 /(4)#5BARS: LONGITUDINAL (4)#5 LONGITUDINAL I//(4) /5 LONGITUDINAL 5/14/15 PERMIT SET s $� II 11 II IV (EQUALLY SPACED) II II _11 II�(EQUALLY SPACED) II I 11 Ir. (EQUALLY SPACED)OM iI TOP& MARK DATE DESCRIPTION Li II II II II II II ' 11_r __, II II I II II a B O 7 II O II - 7 roll O PROJECT INFORMATON ..... II II -II ' . (2)UFT ANCHOR II II II (2)UFT ANCHOR II 1 II (2)UFT ANCHOR E 7SOUTHLE 8 5 el W6xB 5 CALV.POST SOUTH HOLD LANDFILL C gSg II' . II a pp II II cif II o�o II II • }IIS{Ir�O OIII— II B'x6 3i'x) BASE 55 9 = _- p� _ _ 1 �ff — �I-O 11= — • �f —II II— PLATE WELDED TO 6370 CAX LANE • POST CUTCHOUGE,NY 11935 - T¢ II IIS SII II I II II - II II Tf II I II II 1 11 v NUT w/ p. till I'� 111. } a m II 11 II II II II II II N m • G II I II II ��.ii." V PLATED WASHER RBI SOLAR PROJECT No 2 II • �I1I., II II pini X"NUT w/X'PLATED 153146 g a 4. _ _ik_ 4 _ _ V I _ III= =6 = V UL __ _ IiimIS/it WASHER FOR LEVEUNG DRAWN BY REVIEWED BY 1 c� �y '1T YVY' I CTN BS 1 �h'®THREADED ROD SHEET TITLE. 2 -• ..p 1p� ANCHOR,12'LONG w/ a. ''A 1'-10' ,`' ; 1_3-MIN 1'-7)F -7)!� s'\..„.; rCOVER 1-3. `-1'A COVER B'MINIMUM EMBEDMENT BALLAST DESIGN DETAILS COVER6 i 4 SHEET No_ E Al BALLAST BLOCK"A" A3 BALLAST BLOCK"B" A6 BALLAST BLOCK"C" A9 POST/BASE PLATE S-601 ;`-0• PLAN VIEW QTY 157 ;`";-0• PLAN VIEW QTY 130 ,=_� PLAN VIEW QTY 70 3s`-",L•-0• FRONT VIEW 1 2 3 4 5 6 7 8 9 10 11 f f, JOB TITLE SOUTHOLD LANDFILL c;P s t /'7-2;1 SOUTHOLD, NY RBI t JOB NO. T.B.D. SHEET NO. R©I SOLAR CALCULATED BY M.ALY,PE DATE CHECKED BY DATE STRUCTURAL CALCULATIONS FOR SOUTHOLD LANDFILL SOUTHOLD, NY •SOF NEINy �,�P P,00 AN,yFO 9� O 08 1 A19OPE O P Project Name: SOUTHOLD LANDFILL Project No: T.B.D. Wind Zone: North Rows Design Criteria: Code: IBC 2009 Dead Load: 5.0 psf Chord Length= 13.13 ft Roof Live Load: 0.0 psf Ground Snow: 20.0 psf Wind Speed: 120 mph (Exposure C Assumed) Module Tilt: 20.0 deg Purlin Spacing: 3.28 ft Snow Load Calculation:IN=0.7CsCeCtIspg Ce= 1.0 4= 1.2 IS= 0.8 CS= 0.91 p5= 11.5 psf Wind Load Calculation:q=0.00256KZKdKZtV2 Iw KZ= 1.00 Mean Roof Height= 33.0 ft(Per CPP Wind Tunnel Analysis) Kd= 0.85 K:c= 1.0 Iw= 0.77 q= 24.2 psf STAAD Model Input(Z-Purlin Loading) Dead Load: 0.016 klf Roof Live: 0.000 klf Snow Load: 0.038 klf Wind: Balanced Wind(Applied to all purlins): Zone 1 2 3 4 5 Wind Uplift -0.082 klf -0.075 klf -0.061 klf -0.061 klf -0.061 klf Wind Down 0.075 klf 0.052 klf 0.034 klf 0.034 klf 0.032 klf Wind: Unbalanced Wind(Applied to lower half of purlins ONLY): Zone 1 2 3 4 5 Wind Down -0.120 klf -0.078 klf -0.047 klf -0.045 klf -0.042 klf Wind Uplift 0.022 klf 0.030 klf 0.038 klf 0.038 klf 0.035 klf Base Moment: (Downward) -15.063 k-ft -10.133 k-ft -6.025 k-ft -5.934 k-ft -5.751 k-ft Base Moment: (Uplift) 1.643 k-ft 1.278 k-ft 2.282 k-ft 2.465 k-ft 2.374 k-ft NOTE THE DIRECTION OF LOAD 20.0 Degree Tilt Zone: 1 2 3 4 5 Zone Width 0.00 ft 13.13 ft 26.27 ft 39.40 ft 52.54 ft Roof Pressure Coefficients(Wind Tunnel Test Results): Zone: 1 2 3 4 5 GCN Uplift -1.03 -0.95 -0.77 -0.77 -0.77 Downward 0.95 0.65 0.43 0.43 0.40 Roof Pressures(p=gGCN(psf)): Zone: 1 2 3 4 5 Uplift -24.98 -22.97 -18.53 -18.53 -18.53 Downward 22.97 15.71 10.48 10.48 9.67 Base of Post Coefficients(Wind Tunnel Test Results): Zone: 1 2 3 4 5 GCMY Negative -0.28 -0.19 -0.11 -0.11 -0.11 Positive 0.03 0.02 0.04 0.05 0.04 Base of Post Moments(My=GCMy*q*Aref*Lref): Zone: 1 2 3 4 5 Negative(Downward) -15.06 k-ft -10.13 k-ft -6.03 k-ft -5.93 k-ft -5.75 k-ft Positive(Uplift) 0.13 k-ft 0.10 k-ft 0.17 k-ft 0.19 k-ft 0.18 k-ft Lower Purlin Coefficients(Wind Tunnel Results): Zone: 1 2 3 4 5 4*GCMH, Negative -1.51 -0.99 -0.59 -0.57 -0.53 Positive 0.27 0.38 0.48 0.48 0.45 Lower Purlin Pressures(p=q*GCMH,*4){psf} Zone: 1 2 3 4 5 Negative(Downward) -36.59 -23.85 -14.18 -13.70 -12.73 Positive(Uplift) 6.61 9.19 11.60 11.60 10.80 RBI Solar,Inc. JOB TITLE SOUTHOLD LANDFILL 5513 Vine St. SOUTHOLD,NY Cincinnati,OH 45217 JOB NO T B D. SHEET NO. -- ------------ _____ 513-242-0311 CALCULATED BY DATE CHECKED BY DATE VI. Seismic Loads: Seismic Use Group I Importance Factor(Ie) 1 00 Site Class D Ss(0.2 sec)= 20.00%g Zip Code Search for Ss&Sl. SI(1 0 sec)= 5.50%g hili,//euhazmaps uses eov/html/ziscode html Fa= 1.600 Sms= 0 320 Sds= 0 213 Design Category= B Fv= 2.400 Sml= 0 132 Shc= 0.088 Design Category= B Seismic Design Category= B Number of Stones. 1 Structure Type.Light Frame Plan Structural Irregularities.No plan Irregulanty Vertical Structural Irregularities.No vertical Irregularity Flexible Diaphrams.No Building System:Inverted Pendulum Systems Seismic resisting system.Cantilevered column systems System Building Height Limit Height not limited Actual Building Height(hn)=33.0 ft DESIGN COEFFICIENTS AND FACTORS Response Modification Factor(R)= 2.5 System Over-Strength Factor X2o)= 2 Sds=0.213 Deflection Amplification Factor(Cd)= 2.5 Sdl=0.088 Code Reference Section for Detailing•0 PERMITTED ANALYTICAL PROCEDURES Index Force Analysis(Seismic Category A only) Method Not Permitted Simplified Analysis - Permitted Design Base Shear V=1 2SdsW/R= 0 102W Equivalent Lateral-Force Analysis - Permitted Building penod coef. (Cr)= 0.020 Approx fundamental period(Ta)= Crhax= 0 275 x=0.75 Seismic response coef.(Cs)= Sdsle/R= 0.085 need not exceed Cs= Shcle/RTa= 0.128 but not less than Cs= =0.044Sdsle 0.009 USE Cs= 0 085 Design Base Shear V=0 085W Model,Linear&Nonlinear Response Analysis -Permitted(see code for procedure) : i Job No Sheat No I Rev T.B.D. SK-1 1 Software licensed to Part Job Title SOUTHOLD LANDFILL Ref By Dete15-May-15 Chd Chen' Ale North Row.std Datemme 15-May-2015 11.05 °B:a A ��\ i . \-,.., ,. \�4.,8 °I \ x, `. °1 \ .t \\ \ \\ ;o18i \, \` 4\ N. 'N \ 'N o \ \ ���777 �, b3� ,\NN \\ \° N.\ `\ 42 \\ '° v' N \°qa% °a1'e J SK-1 ®® Print Time/Date 15/05/201511 48 STAAD Pro V8i 20 07.05 15 Print Run 1 of 1 %.4 - Job No Sheet No Rev T.B.D. SK-2 Software licensed to Part Job Title SOUTHOLD LANDFILL Ref By Date15-May-15 Chd Client Fite North Row std Datomnre 15-May-201511 05 b\ „A\ \\ ,-° \dsiX\N ''\. `. \,'-. • , QOft 90ft \ ,.267ft:L \ ith\ \ soft \N0 .D�" `1ft \\\ \ 16ft \ '''‘\ \ \ ole \\\"at b '.0' \\ �N dm\ \ .\ \ � \\ 'Nolo,. \ N \b„-o"- \ lo 9,01...t \ b. . / i�\\ I \\ \\ \ \ 4 eat bre SK-2 Print The/Date 15/052015 11 49 STAAD Pro V8t 20 07.0515 Print Run 1 of 1 Job No Sheet No Rev T.B.D. Result Software licensed to Part i ' Job Title SOUTHOLD LANDFILL Ref By Date15-May-15 Chd Client F11e North Row.std Date/rime 15-May-2015 11 05 Nodes Node X Y Z (ft) (ft) (ft) 1 0 000 0.612 0.000 2 9.834 4.191 0.000 3 3.663 1.945 0.000 4 6.171 2.858 0.000 5 1 831 1.279 0.000 6 8.002 3 525 0.000 8 8.002 0.118 0.000 9 0.000 0.612 16.600 10 9 834 4.191 16.600 11 3.663 1.945 16.600 12 6.171 2.858 16.600 13 1 831 1.279 16.600 14 8.002 3.525 16 600 16 8 002 0.118 16.600 17 0.000 '0 612 33.200- 18 9.834 4.191 33 200 19 3.663 1.945 33.200 20 6.171 2.858 33.200 21 1 831 1.279 33.200 22 8.002 .3 525 33 200 ' 24 8.002 0.118 33.200 25 0.000 0.612 49.800 26 9.834 4.191 49.800 27 3.663 1945 49.800 28 6.171 2.858 49.800 29 1.831 1 279 49.800 30 8.002 3.525 49.800 32 8.002 0.118 49.800 33 0.000 0.612 66.400 34 9.834 4191 66.400 35 3.663 1.945 66.400 36 6.171 2 858 66.400 37 1.831 1.279 66.400 38 8.002 3.525 66.400 40 8.002 0.118 66 400 41 0.000 0.612 83.000 42 9.834 4 191 83.000 43 3 663 1 945 83 000 44 6.171 2.858 83.000 45 1.831 1 279 83 000 46 8.002 3.525 83.000 48 8.002 0.118 83.000 49 1.831 0.118 83.000 50 1.831 0.118 66.400 51 1.831 0 118 49 800 Print Time/Date 15/05/201511 30 STAAD.Pro V8i 20.07 05.15 Print Run 1 of 19 Firjoiei Job No Sheet No Rev T.B.D. Result A_ ________________________ Part Software licensed to Job Title SOUTHOLD LANDFILL Ref By Date15-May-15 Chd Client File North Row.std Date/Time 15-May-2015 11:05 Nodes Cont... Node X Y Z - (ft) (ft) (ft) 52 1 831 0.118 33.200 53 1.831 0.118 16.600 54 1 831 0 118 0.000 55 8.002 0.618 0.000 56 8.002 0.618 16.600 Beams Beam Node A Node B Length Property 0 (ft) (degrees) 1 1 5 1.949 3 0 2 3 4 2.669 3 0 3 4 6 1.949 3 0 4 5 3 1.949 3 0 5 6 2 1.949 3 0 7 8 55 0 500 1 0 9 9 13 1.949 3 0 10 11 12 2 669 3 0 11 12 14 1.949 3 0 12 13 11 1.949 3 0 13 14 10 1.949 3 0 15 16 56 0.500 1 0 17 17 21 1.949 3 0 18 19 20 2.669 3 0 19 20 22 1.949 3 0 20 21 19 1.949 3 0 21 22 18 1.949 3 0 23 24 22 3.407 1 0 25 25 29 1.949 3 0 26 27 28 2.669 3 0 27 28 30 1.949 3 0 28 29 27 1.949 3 0 29 30 26 1.949 3 0 31 32 30 3.407 1 0 33 2 10 16.600 5 20 34 10 18 16 600 5 20 35 18 26 16.600 5 20 36 4 12 16 600 5 20 1 37 12 20 16.600 5 20 38 20 28 16.600 5 20 39 3 11 16.600 5 20 40 11 19 16.600 5 20 41 19 27 16.600 5 20 42 1 9 16.600 5 20 Print Time/Date.15/05/201511.30 STAAD.Pro V8i 20.07.05.15 Pnnt Run 2 of 19 Fpro:s3 Job No Sheet No Rev T.B.D. Result 4111110 Software licensed to Part Job Title SOUTHOLD LANDFILL Ref By Date1 5-May-15 Chd Client File North Row std Date/Time 15-May-2015 11:05 Beams Cont... Beam Node A Node B Length Property p _, (ft) (degrees) 43 9 17 16.600 5 20 44 17 25 16.600 5 20 47 33 37 1.949 3 0 48 35 36 2.669 3 0 49 36 38 1.949 3 0 50 37 35 1.949 3 0 51 38 34 1 949 3 0 53 40 38 3.407 1 0 55 26 34 16.600 5 20 56 28 36 16.600 5 20 57 27 35 16.600 5 20 58 25 33 16.600 5 20 _ 59 41 45 1.949 3 0 60 43 44 2 669 3 0 _ 61 44 46 1.949 3 0 62 45 43 1.949 3 0 63 46 42 1.949 3 0 65 48 46 3.407 1 0 67 34 42 16.600 5 20 68 36 44 16.600 5 20 69 35 43 16.600 5 20 70 33 41 16.600 5 20 71 45 49 1.161 1 0 72 5 54 1.161 1 0 73 13 53 1.161 1 0 74 21 52 1.161 1 0 ' 75 29 51 1.161 1 0 1 76 37 50 1.161 1 0 78 55 6 2.907 1 0 79 56 14 2.907 1 0 80 6 56 16 853 4 0 81 14 55 16.853 4 0 Print Time/Date 15/05/2015 11 30 STAAD.Pro V8i 20.07.05.15 Print Run 3 of 19 FAIIC Job No Shee Rev T.B.D. Result 411110/ Software licensed to Part Job Title SOUTHOLD LANDFILL Ref By Date15-May-15 Chd Client File North Row.std Date/Time 15-May-2015 11:05 Basic Load Cases Number Name 1 DEAD LOAD 2 SNOW LOAD 3 UPLIFT 4 DOWN 5 UNBALANCED UPLIFT 6 UNBALANCED DOWN 7 BASE POS MOMENT-ZONE 1 8 BASE POS MOMENT-ZONE 2 9 BASE POS MOMENT-ZONE 3 10 BASE POS MOMENT-ZONE 4 11 BASE POS MOMENT-ZONE 5 12 BASE NEG MOMENT-ZONE 1 13 BASE NEG MOMENT-ZONE 2 14 BASE NEG MOMENT-ZONE 3 15 BASE NEG MOMENT-ZONE 4 j 16 BASE NEG MOMENT-ZONE 5 — 17 TRANS EQ 18 LONG EQ Combination Load Cases Comb. Combination LIC Name Primary Primary L/C Name Factor 19 GENERATED IBC TABLE7ASD241 1 1 DEAD LOAD 1.00 20 GENERATED IBC TABLE7ASD241 2 1 DEAD LOAD 1.00 2 SNOW LOAD 1.00 21 GENERATED IBC TABLE7ASD241 3 1 DEAD LOAD 1 00 2 SNOW LOAD 0.75 22 GENERATED IBC TABLE7ASD241 4 1 DEAD LOAD 1.00 3 UPLIFT 1.00 ' 23 GENERATED IBC TABLE7ASD241 5 1 DEAD LOAD 1.00 4 DOWN 1.00 24 GENERATED IBC TABLE7ASD241 6 1 DEAD LOAD 1.00 5 UNBALANCED UPLIFT 1.00 25 GENERATED IBC TABLE7ASD241 7 1 DEAD LOAD 1.00 6 UNBALANCED DOWN. 1.00 26 GENERATED IBC TABLE7ASD241 8 1 DEAD LOAD 1.00 7 BASE POS MOMENT-ZONE 1 1.00 27 GENERATED IBC TABLE7ASD241 9 1 DEAD LOAD 1.00 8 BASE POS MOMENT-ZONE 2 1.00 28 GENERATED IBC TABLE7ASD241 10 1 DEAD LOAD 1 00 9 BASE POS MOMENT-ZONE 3 1.00 29 GENERATED IBC TABLE7ASD241 11 1 DEAD LOAD 1 00 10 BASE POS MOMENT-ZONE 4 1 00 Print Time/Date 15/05/201511 30 STAAD.Pro V8i 20.07.05.15 Print Run 4 of 19 I Job No Sheet No Rev T.B.D. Result Software licensed to Part Job Title SOUTHOLD LANDFILL Ref By Date15-May-15 Chd Client File North Row std Date/Time 15-May-2015 11:05 Combination Load Cases Cont... Comb. Combination LIC Name Primary Primary UC Name Factor 30 GENERATED IBC TABLE7ASD241 12 1 DEAD LOAD 1.00 11 BASE POS MOMENT-ZONE 5 1 00 31 GENERATED IBC TABLE7ASD241 13 1 DEAD LOAD 1.00 12 BASE NEG MOMENT-ZONE 1 1.00 32 GENERATED IBC TABLE7ASD241 14 1 DEAD LOAD 1.00 13 BASE NEG MOMENT-ZONE 2 1.00 33 GENERATED IBC TABLE7ASD241 15 1 DEAD LOAD 1.00 14 BASE NEG MOMENT-ZONE 3 1.00 34 GENERATED IBC TABLE7ASD241 16 1 DEAD LOAD 1.00 15 BASE NEG MOMENT-ZONE 4 1.00 35 GENERATED IBC TABLE7ASD241 17 1 DEAD LOAD 1 00 16 BASE NEG MOMENT-ZONE 5 1.00. 36 GENERATED IBC TABLE7ASD241 18 1 DEAD LOAD 1.00 17 TRANS EQ 0 70 37 GENERATED IBC TABLE7ASD241 19 1 DEAD LOAD 1.00 18 LONG EQ 0 70 38 GENERATED IBC TABLE7ASD241 20 1 DEAD LOAD 1.00 17 TRANS EQ -0.70 39 GENERATED IBC TABLE7ASD241 21 1 DEAD LOAD 1.00 18 LONG EQ -0.70 40 GENERATED IBC TABLE7ASD241 22 1 DEAD LOAD 1.00 3 UPLIFT 0.75 41 GENERATED IBC TABLE7ASD241 23 1 DEAD LOAD 1.00 4 DOWN 0.75 42 GENERATED IBC TABLE7ASD241 24 1 DEAD LOAD 1.00 5 UNBALANCED UPLIFT 0.75 43 GENERATED IBC TABLE7ASD241 25 1 DEAD LOAD 1.00 6 UNBALANCED DOWN 0 75 44 GENERATED IBC TABLE7ASD241 26 1 DEAD LOAD 1.00 7 BASE POS MOMENT-ZONE 1 0.75 45 GENERATED IBC TABLE7ASD241 27 1 DEAD LOAD 1 00 8 BASE POS MOMENT-ZONE 2 0.75 46 GENERATED IBC TABLE7ASD241 28 1 DEAD LOAD 1 00 9 BASE POS MOMENT-ZONE 3 0.75 47 GENERATED IBC TABLE7ASD241 29 1 DEAD LOAD 1.00 10 BASE POS MOMENT-ZONE 4 0.75 48 GENERATED IBC TABLE7ASD241 30 1 DEAD LOAD 1.00 11 BASE POS MOMENT-ZONE 5 0.75 49 GENERATED IBC TABLE7ASD241 31 1 DEAD LOAD 1.00 12 BASE NEG MOMENT-ZONE 1 0 75 50 GENERATED IBC TABLE7ASD241 32 1 DEAD LOAD 1 00 13 BASE NEG MOMENT-ZONE 2 0 75 51 GENERATED IBC TABLE7ASD241 33 1 DEAD LOAD 1 00 14 BASE NEG MOMENT-ZONE 3 0 75 52 GENERATED IBC TABLE7ASD241 34 1 DEAD LOAD 1.00 Pnnt Time/Date:15/05/201511 30 STAAD.Pro V8i 20.07.05 15 Print Run 5 of 19 Job No Sheet No ((((Rev T.B.D. Resultidini° J Software licensed to Part Job Title SOUTHOLD LANDFILL Ref By Date1 5-May-15 Chd Client File North Row.std Date/Time 15-May-2015 11 05 Combination Load Cases Cont... Comb. Combination UC Name Primary Primary LIC Name Factor 15 BASE NEG MOMENT-ZONE 4 0.75 53 GENERATED IBC TABLE7ASD241 35 1 DEAD LOAD 1 00 16 BASE NEG MOMENT-ZONE 5 0.75 54 GENERATED IBC TABLE7ASD241 36 1' DEAD LOAD 1.00 3 UPLIFT 0.75 2 SNOW LOAD 0.75 55 GENERATED IBC TABLE7ASD241 37 1 DEAD LOAD 1.00 4 DOWN 0.75 2 SNOW LOAD 0.75 56 GENERATED IBC TABLE7ASD241 38 1 DEAD LOAD 1.00 5 UNBALANCED UPLIFT 0.75 2 SNOW LOAD 0.75 57 GENERATED IBC TABLE7ASD241 39 1 DEAD LOAD 1.00 6 UNBALANCED DOWN 0 75 2 SNOW LOAD 0.75 58 GENERATED IBC TABLE7ASD241 40 1 DEAD LOAD 1.00 7 BASE POS MOMENT-ZONE 1 0.75 2 SNOW LOAD 0.75 59 GENERATED IBC TABLE7ASD241 41 1 DEAD LOAD 1 00 8 BASE POS MOMENT-ZONE 2 0.75 2 SNOW LOAD 0.75 60 GENERATED IBC TABLE7ASD241 42 1 DEAD LOAD 1.00 9 BASE POS MOMENT-ZONE 3 0 75 2 SNOW LOAD 0.75 61 GENERATED IBC TABLE7ASD241 43 1 DEAD LOAD 1.00 10 BASE POS MOMENT-ZONE 4 0.75 2 SNOW LOAD 0 75 62 GENERATED IBC TABLE7ASD241 44 1 DEAD LOAD 1.00 11 BASE POS MOMENT-ZONE 5 0.75 2 SNOW LOAD 0.75 63 GENERATED IBC TABLE7ASD241 45 1 DEAD LOAD 1.00 12 BASE NEG MOMENT-ZONE 1 0.75 2 SNOW LOAD 0.75 64 GENERATED IBC TABLE7ASD241 46 1 DEAD LOAD 1.00 13 BASE NEG MOMENT-ZONE 2 0.75 2 SNOW LOAD 0.75 65 GENERATED IBC TABLE7ASD241 47 1 DEAD LOAD 1.00 14 BASE NEG MOMENT-ZONE 3 0.75 2 SNOW LOAD 0.75 66 GENERATED IBC TABLE7ASD241 48 1 DEAD LOAD 1.00 15 BASE NEG MOMENT-ZONE 4 - 0.75 2 SNOW LOAD 0 75 67 GENERATED IBC TABLE7ASD241 49 1 DEAD LOAD 1.00 16 BASE NEG MOMENT-ZONE 5 0.75 2 SNOW LOAD 0.75 Pnnt Time/Date*15/05201511.30 STAAD.Pro V8i 20.07.05.15 Pnnt Run 6 of 19 Fsporil Job No Sheet No Rev T.B.D. Result illifr Software licensed to Part Job Title SOUTHOLD LANDFILL Ref By Date15-May-15 Chd Client File North Row.std Date/rime 15-May-2015 11:05 Combination Load Cases Cont... Comb. Combination UC Name Primary Primary LIC Name Factor 68 GENERATED IBC TABLE7ASD241 50 1 DEAD LOAD 1 00 17 TRANS EQ 0.52 69 GENERATED IBC TABLE7ASD241 51 1 DEAD LOAD 1 00 18 LONG EQ 0.52 70 GENERATED IBC TABLE7ASD241 52 1 DEAD LOAD 1.00 17 TRANS EQ 0 52 2 SNOW LOAD 0.75 71 GENERATED IBC TABLE7ASD241 53 1 DEAD LOAD 1 00 18 LONG EQ 0.52 2 SNOW LOAD 0.75 72 GENERATED IBC TABLE7ASD241 54 1 DEAD LOAD 1 00 17 TRANS EQ -0.52 73 GENERATED IBC TABLE7ASD241 55 1 DEAD LOAD 1.00 18 LONG EQ -0 52 74 GENERATED IBC TABLE7ASD241 56 1 DEAD LOAD 1.00 17 TRANS EQ -0 52 2 SNOW LOAD 0.75 75 GENERATED IBC TABLE7ASD241 57 1 DEAD LOAD 1.00 18 LONG EQ -0.52 2 SNOW LOAD 0.75 76 GENERATED IBC TABLE7ASD241 58 1 DEAD LOAD 0.60 3 UPLIFT 1.00 77 GENERATED IBC TABLE7ASD241 59 1 DEAD LOAD 0.60 ! 1 4 DOWN 100 78 GENERATED IBC TABLE7ASD241 60 1 DEAD LOAD 0.60 5 UNBALANCED UPLIFT 1.00 79 GENERATED IBC TABLE7ASD241 61 1 DEAD LOAD 0.60 6 UNBALANCED DOWN 1.00 80 GENERATED'IBC TABLE7ASD241 62 1 DEAD LOAD 0.60 7 BASE POS MOMENT-ZONE 1 1.00 81 GENERATED IBC TABLE7ASD241 63 1 DEAD LOAD 0.60 8 . BASE POS MOMENT-ZONE 2 1.00 82 GENERATED IBC TABLE7ASD241 64 1 DEAD LOAD 0.60 9 BASE POS MOMENT-ZONE 3 1.00 83 GENERATED IBC TABLE7ASD241 65 1 DEAD LOAD 0 60 10 BASE POS MOMENT-ZONE 4 1.00 84 GENERATED IBC TABLE7ASD241 66 1 DEAD LOAD 0.60 11 BASE POS MOMENT-ZONE 5 1 00 85 GENERATED IBC TABLE7ASD241 67 1 DEAD LOAD 0.60 12 BASE NEG MOMENT-ZONE 1 1.00 86 GENERATED IBC TABLE7ASD241 68 1 DEAD LOAD 0.60 13 BASE NEG MOMENT-ZONE 2 1.00 87 GENERATED IBC TABLE7ASD241 69 1 DEAD LOAD 0.60 14 BASE NEG MOMENT-ZONE 3 1 00 88 GENERATED IBC TABLE7ASD241 70 1 DEAD LOAD 0.60 Print Time/Date 15/05/2015 11 30 STAAD Pro V8i 20 07.05.15 Print Run 7 of 19 F211; Job NoSheet No Rev T.B.D. Result Software licensed to Part Job Title SOUTHOLD LANDFILL Ref By Date15-May-15 Chd Client File North Row.std Date/Time 15-May-2015 11:05 Combination Load Cases Cont... Comb. Combination UC Name Primary Primary UC Name Factor 15 BASE NEG MOMENT-ZONE 4 1.00 89 GENERATED IBC TABLE7ASD241 71 1 DEAD LOAD 0.60 16 BASE NEG MOMENT-ZONE 5 , 1.00 90 GENERATED IBC TABLE7ASD241 72 1 DEAD LOAD 0.60 17 TRANS EQ 0.70 91 GENERATED IBC TABLE7ASD241 73 1 DEAD LOAD 0.60 18 LONG EQ 0 70 92 GENERATED IBC TABLE7ASD241 74 1 DEAD LOAD 0.60 17 TRANS EQ -0.70 93 GENERATED IBC TABLE7ASD241 75 1 DEAD LOAD 0.60 18 LONG EQ -0.70 Beam Loads : 1 DEAD LOAD Beam Type Direction Fa Da Fb Db Ecc. (ft) (ft) 33 UNI Ibf/ft GY -16.000 - - - - 34 UNI Ibf/ft GY -16.000 - - - - 35 UNI Ibf/ft GY -16.000 - - - - 36 UNI Ibf/ft GY -16.000 - - - - 37 UNI Ibf/ft GY -16 000 - - - - 38 UNI Ibf/ft GY -16.000 - - - - 39 UNI Ibf/ft GY -16.000 - - - - 40 UNI Ibf/ft GY -16 000 - - - - 41 UNI Ibf/ft GY -16.000 - - - - 42 UNI Ibf/ft GY -16 000 - - - - 43 UNI Ibf/ft GY -16.000 - - - - 44 UNI Ibf/ft GY -16.000 - - - - 55 UNI lbf/ft GY -16.000 - - - - 56 UNI Ibf/ft GY -16.000 - - - - 57 UNI Ibf/ft GY -16.000 - - - - 58 UNI Ibf/ft GY -16.000 - - - - 67 UNI Ibf/ft GY -16.000 - - - - 68 UNI Ibf/ft GY -16 000 - - - - 69 UNI Ibf/ft GY -16.000 - - - - 70 UNI Ibf/ft GY -16.000 - - - - Print Time/Date.15/05/2015 11.30 STAAD.Pro V8l 20.07.05.15 Pnnt Run 8 of 19 plecl Job No Sheet No Rev T.B.D. Result Software licensed to Part Job Title SOUTHOLD LANDFILL Ref By Date.'5444_15 Chd Client File North Row std Daterrime 15-May-2015 11.05 Beam Loads : 2 SNOW LOAD Beam Type Direction Fa Da Fb Db Ecc. (ft) (ft) 33 UNI lbf/ft GY -38 000 - - - - 34 UNI lbf/ft GY -38 000 - - - - 35 UNI lbf/ft GY -38.000 - - - - 36 UNI lbf/ft GY -38.000 - - - - 37 UNI lbf/ft GY -38.000 - - - - 38 UNI lbf/ft GY -38 000 - - - - 39 UNI lbf/ft GY -38.000 - - - - 40 UNI lbf/ft GY -38.000 - - - - 41 UNI lbf/ft GY -38.000 - - - - 42 UNI lbf/ft GY -38.000 - - - - 43 UNI lbf/ft GY -38.000 - - - - 44 UNI lbf/ft GY -38.000 - - - - 55 UNI lbf/ft GY -38.000 - - - - 56 UNI lbf/ft GY -38 000 - - - - 57 UNI lbf/ft GY -38.000 - - - - 58 UNI lbf/ft GY -38.000 - - - - 67 UNI lbf/ft GY -38.000 - - - - 68 UNI lbf/ft GY -38.000 - - - - 69 UNI lbf/ft GY -38.000 - - - - 70 UNI lbf/ft GY -38.000 - - - - Beam Loads : 3 UPLIFT Beam Type Direction Fa Da Fb Db Ecc. (ft) (ft) 33 UNI lbf/ft Y 82 000 0.000 - 13.134 - UNI Ibf/ft Y 75.000 13.134 - 16.600 - 34 UNI lbf/ft Y 75.000 0.000 - 9 668 - UNI lbf/ft Y 61.000 9 668 - 16 600 - 35 UNI lbf/ft Y 61.000 0 000 - 6 202 UNI lbf/ft Y 61.000 6.202 - 16.600 - 36 UNI lbf/ft Y 82.000 0.000 - 13 134 - UNI lbf/ft Y 75.000 13.134 - 16.600 - 37 UNI lbf/ft Y 75.000 0.000 - 9.668 - UNI Ibf/ft Y 61.000 9.668 - 16.600 - 38 UNI lbf/ft Y 61.000 0.000 - 6.202 - UNI lbf/ft Y 61.000 6.202 - 16.600 - 39 UNI lbf/ft Y 82 000 0.000 - 13.134 - UNI lbf/ft Y 75 000 13.134 - 16.600 - 40 UNI lbf/ft Y 75.000 0.000 - 9.668 - UNI lbf/ft Y 61.000 9.668 - 16.600 - 41 UNI lbf/ft Y 61.000 0.000 - 6 202 - UNI lbf/ft Y 61.000 6.202 - 16 600 - 42 UNI lbf/ft Y 82.000 0.000 - 13 134 - Pnnt Time/Date 15/05/201511.30 STAAD Pro V8I 20.07 05.15 Print Run 9 of 19 F4071 Job NoSheet No Rev T.B.D. Result Software licensed to Part ' ; Job Title SOUTHOLD LANDFILL Ref By Date1 5-May-15 Chd Client File North Row.std Date/time 15-May-2015 11:05 Beam Loads : 3 UPLIFT Cont... i Beam Type Direction Fa Da Fb Db Ecc. (ft) (ft) 42 UNI Ibf/ft Y 75.000 13.134 - 16.600 - 43 UNI lbf/ft Y 75.000 0.000 - 9.668 - UNI lbf/ft Y 61.000 9.668 - 16.600 - 44 UNI lbf/ft Y 61.000 0.000 - 6.202 - UNI lbf/ft Y 61.000 6.202 - 16.600 - 55 UNI lbf/ft Y 61.000 0.000 - 2.736 - UNI lbf/ft Y 61.000 2.736 - 16.600 - 56 UNI lbf/ft Y 61.000 0.000 - 2.736 - UNI lbf/ft Y 61.000 2.736 - 16.600 - 57 UNI lbf/ft Y 61.000 0.000 - 2.736 - UNI lbf/ft Y 61.000 2 736 - 16.600 - 58 UNI lbf/ft Y 61 000 0.000 - 2.736 - UNI lbf/ft Y 61.000 2.736 - 16.600 - 67 UNI lbf/ft Y 61.000 - - - - 68 UNI lbf/ft Y 61 000 - - - - 69 UNI lbf/ft Y 61.000 - - - - 70 UNI lbf/ft Y 61 000 - - ' Beam Loads : 4 DOWN Beam Type Direction Fa Da Fb Db Ecc. (ft) (ft) 33 UNI lbf/ft Y -75.000 0 000 - 13.134 - UNI lbf/ft Y -52.000 13.134 - 16.600 - 34 UNI lbf/ft Y -52.000 0.000 - 9.668 - UNI Ibf/ft Y -34.000 9 668 - 16 600 - 35 UNI Ibf/ft Y -34.000 0.000 - 6.202 - UNI lbf/ft Y -34.000 6.202 - 16.600 - 36 UNI lbf/ft Y -75.000 0.000 - 13.134 - UNI lbf/ft Y -52.000 13 134 - 16.600 - 37 UNI Ibf/ft Y -52.000 0.000 - 9.668 - UNI lbf/ft Y -34.000 9.668 - 16.600 - 38 UNI lbf/ft Y -34.000 0 000 6.202 I UNI lbf/ft Y -34.000 6.202 - 16.600 - 39 - UNI lbf/ft Y -75.000 0.000 - 13.134 - UNI lbf/ft Y -52.000 13.134 - 16.600 - 40 UNI lbf/ft Y -52 000 0.000 - 9 668 - UNI lbf/ft Y -34.000 9.668 - 16.600 - 41 UNI lbf/ft Y -34.000 0.000 - 6.202 - UNI lbf/ft Y -34.000 6.202 - 16 600 - 1 42 UNI lbf/ft Y -75.000 0 000 - 13.134 - UNI lbf/ft Y -52.000 13 134 - 16.600 - 43 UNI lbf/ft Y -52.000 0.000 - 9.668 - UNI lbf/ft Y -34.000 9.668 - 16.600 - Pnnt Time/Date•15/05201511.30 STAAD.Pro V8i 20.07.05 15 Pnnt Run 10 of 19 Fsliei Job No Sheet No Rev T.B.D. Result 4111W - Software licensed to Part Job Title SOUTHOLD LANDFILL Ref By Date15-May-15 Chd Client File North Row std Date/Time 15-May-2015 11:05 Beam Loads : 4 DOWN Cont... Beam Type Direction Fa Da Fb Db Ecc. (ft) (ft) 44 UNI Ibf/ft Y -34.000 0.000 - 6.202 - UNI Ibf/ft Y -34.000 6.202 - 16.600 - 55 UNI Ibf/ft Y -34.000 0 000 - 2.736 - UNI Ibf/ft Y -32.000 2.736 - 16.600 - 56 UNI Ibf/ft Y -34.000 0.000 - 2.736 - UNI Ibf/ft Y -32.000 2.736 - 16 600 - 57 UNI , Ibf/ft Y -34 000 0 000 - 2.736 - UNI Ibf/ft Y -32.000 2.736 - 16 600 - 58 UNI Ibf/ft Y -34.000 0.000 - 2.736 - UNI Ibf/ft Y -32.000 2.736 - 16.600 - 67 UNI Ibf/ft Y -32.000 - - - - 68 UNI Ibf/ft Y -32.000 - - - - 69 UNI Ibf/ft Y -32.000 - - - - 70 UNI Ibf/ft Y -32.000 - - - - Beam Loads : 5 UNBALANCED UPLIFT Beam Type Direction Fa Da Fb Db Ecc. (ft) (ft) 39 UNI Ibf/ft Y 22 000 0.000 - 13.134 - UNI Ibf/ft Y 30.000 13 134 - 16.600 - 40 UNI Ibf/ft Y 30 000 0.000 9.668 - UNI Ibf/ft Y 38.000 9 668 - 16.600 - 41 UNI Ibf/ft Y 38 000 0.000 - 6 202 - UNI Ibf/ft Y 38.000 6.202 - 16.600 - 42 UNI Ibf/ft Y 22.000 0.000 - 13.134 - UNI Ibf/ft Y 30.000 13.134 - 16.600 - 43 UNI Ibf/ft Y 30.000 0.000 - 9.668 - UNI Ibf/ft Y 38.000 9.668 - 16.600 - 44 UNI Ibf/ft Y 38.000 0 000 - 6 202 - UNI Ibf/ft Y 38.000 6.202 - 16.600 - 57 UNI Ibf/ft Y 38.000 0 000 - 2.736 - UNI Ibf/ft Y 35.000 2.736 - 16.600 - 58 UNI Ibf/ft Y 38.000 0 000 - 2.736 - UNI Ibf/ft Y 35.000 2.736 - 16 600 - 69 UNI Ibf/ft Y 35.000 - - - - 70 UNI Ibf/ft Y 35.000 - - - - Print Time/Date:15/05/201511.30 STAAD.Pro V8i 20.07 05.15 Pnnt Run 11 of 19 Job No Sheet No Rev T.B.D. Result Software licensed to Part Job Title SOUTHOLD LANDFILL Ref By Date15-May-15 CM Client File North Row std Date/Time 15-May-2015 11:05 i , 1 Beam Loads : 6 UNBALANCED DOWN Beam Type Direction Fa Da Fb Db Ecc. (ft) (ft) 39 UNI Ibf/ft Y -120.000 0.000 - 13.134 - UNI Ibf/ft Y ,__ -78.000 13.134 - 16 600 - 40 UNI Ibf/ft Y -78.000 0 000 - 9.668 - UNI Ibf/ft Y -47.000 9.668 - 16.600 - 41 UNI Ibf/ft Y -47.000 0.000 - 6 202 - UNI Ibf/ft Y -45.000 6.202 - 16.600 - 42 UNI Ibf/ft Y -120.000 0 000 - 13.134 - UNI Ibf/ft Y -78 000 13.134 - 16 600 - 43 UNI Ibf/ft Y -78.000 0.000 - 9.668 - UNI Ibf/ft Y -47.000 9.668 - 16.600 - 44 UNI Ibf/ft Y -47.000 0.000 - 6.202 - UNI Ibf/ft Y -45.000 6.202 - 16.600 - 57 UNI Ibf/ft Y -45.000 0 000 - 2.736 - UNI Ibf/ft Y -42 000 2 736 - 16.600 - 58 UNI Ibf/ft Y -45.000 0.000 - 2.736 - UNI Ibf/ft Y -42.000 2.736 - 16.600 - 69 UNI Ibf/ft Y -42 000 - - - - 70 UNI Ibf/ft Y -42.000 - - - - Node Loads : 7 BASE POS MOMENT - ZONE 1 Node FX FY FZ MX MY MZ (kip) (kip) (kip) (kip-ft) (kip-ft) (kip ft) 8 - - - - - -0 821 - 16 - - - - -0.821 24 - _ _ - -0 821 32 - - - - -0.821 40 - - - - - -0.821 48 - - - - -0.821 49 - - - - -0.821 50 - - - - -0 821 51 - - -, - -0.821 52 - - - - - -0.821 53 - - - - -0.821 54 - - - - -0.821 Print Time/Date 15/05/201511 30 STAAD.Pro V8i 20.07.05 15 Pnnt,Run 12 of 19 Job No Sheet No Rev T.B.D. Result Software licensed to Part Job Title SOUTHOLD LANDFILL Ref By Date1 5-May-15 Chd Client File North Row.std Date/rime 15-May-2015 11:05 Node Loads : 8 BASE POS MOMENT - ZONE 2 Node FX FY FZ MX MY MZ (kip) (kip) (kip) (kipit) (kipit) (kip ft) 8 - - - - - -0.639 16 - - - - -0.639 24 - - - - - -0 639 32 - - - - - -0.639 40 - - - - - -0 639 48 - - - - - -0.639 49 - - - - - -0.639 50 - - - - - -0 639 51 - - - - - -0.639 52 - - - - - -0.639 53 - - - - - -0 639 54 - - - - -0.639 Node Loads : 9 BASE POS MOMENT - ZONE 3 Node FX FY FZ MX MY MZ (kip) (kip) (kip) (kip'ft) (kip"ft) (kip ft) 8 - - - - - -1.141 16 - - _ - - -1.141 24 - - -1.141 32 - - - - - -1.141 40 - - - - -1.141 48 - - - - -1.141 49 - - - - - -1.141 50 - - - - - -1.141 51 - - - - - -1.141 52 - - - - -1.141 53 - - - - - -1.141 54 - - - - -1.141 Pnnt Time/Date 15/05/201511 30 STAAD.Pro V8i 20.07.05 15 Pnnt Run 13 of 19 Job No Sheet No Rev T.B.D. J Result 411.1.% Software licensed to Part Job Title SOUTHOLD LANDFILL Ref By Date15-May-15 Chd Client File North Row.std Date/rime 15-May-2015 11.05 Node Loads : 10 BASE POS MOMENT - ZONE 4 Node FX FY FZ MX MY MZ '_ ' (kip) (kip) (kip) (kip,:ft) (kip'ft) (kip-ft) 24 - - - - - -1.232 32 - - - - - -1.232 40 - - - - -1.232 48 - - - - - -1.232 49 - - - - -1.232 50 - - - - -1.232 51 - _ - - - -1.232 52 - - - - -1232 53 - - - - -1232 54 - - - - -1232 55 - - - - - -1.232 56 - - - -1232 Node Loads : 11 BASE POS MOMENT - ZONE 5 Node FX FY FZ MX MY MZ (kip) (kip) (kip) (kip ft) (kip-ft) (kip ft) 8 - _ - - -1.187 16 - - - - -1.187 24 - - - - - -1.187 32 - - - - -1.187 40 - - - - -1.187 48 - - - - -1.187 49 , -1.187 50 - - - - - -1.187 51 - - - - -1.187 52 - - - - -1 187 53 - - - - -1.187 54 - - - - - -1.187 Print Time/Date 15/05/2015 11 30 STAAD.Pro V8i 20 07.05.15 Print Run 14of19 Frop71 Job NoSheet No Rev T.B.D. Result 41110 Software licensed to Part Job Title SOUTHOLD LANDFILL Ref By Date15-May-15 Chd Client File North Row.std Date/time 15-May-2015 11.05 Node Loads : 12 BASE NEG MOMENT - ZONE 1 Node FX FY FZ MX MY MZ • _- (kip) (kip) (kip) (kip-ft) (kip-ft) (kip"ft) 8 - - - - 7.531 , 16 - - - - 7.531 24 - - - - - 7.531 32 - - - - - 7.531 40 - - - - - 7.531 48 - - - - 7.531 49 - - - - - 7.531 50 - - - - 7.531 51 - - - - - 7.531 52 - - - - 7.531 53 - - - - 7.531 54 - - - - 7.531 Node Loads : 13 BASE NEG MOMENT - ZONE 2 Node FX FY FZ MX MY MZ (kip) (kip) (kip) (kip-ft) (kip'ft) (kip-ft) 8 - - - - 5.067 16 - - - - - 5.067 24 - - - - - 5.067 32 - - - - - 5.067 40 - - - - 5.067 48 - - - - 5.067 49 - - - - 5.067 50 - - - - 5.067 51 - - - - - 5.067 52 - - - - - 5.067 53 - - - - - 5.067 54 - - - - 5 067 • Pnnt Time/Date 15/05/2015 11 30 STAAD.Pro V8i 20.07 05.15 Pnnt Run 15 of 19 Foo*Ni Job No Sheet No Rev T.B.D. Result I.A Software licensed to Part Job Title SOUTHOLD LANDFILL Ref By Date15-May-15 Chd Client File North Row.std Date/Time 15-May-2015 11:05 Node Loads : 14 BASE NEG MOMENT - ZONE 3 Node FX FY FZ MX MY MZ (kip) (kip) (kip) (kip'ft) (kip"ft) (kip-ft) 8 - - - - - 3.013 16 - - - - - 3.013 24 - - - - - 3.013 32 - - - - - 3.013 40 - - - - - 3.013 48 - - - - - 3.013 49 - - - - - 3.013. 50 - - - - - 3.013 51 - - - - - 3.013 52 - - - - - 3.013 53 - - - - - 3.013 54 - - - - - 3.013 Node Loads : 15 BASE NEG MOMENT - ZONE 4 Node FX FY FZ MX MY MZ (kip) (kip) (kip) (kip"ft) (kip ft) (kip'ft) 8 - - - - - 2.967 16 - - - - - 2.967 24 - - - - - 2.967 32 - - - - - 2.967 40 - - - - - 2.967 ' ; 48 - - - - - 2.967 49 - - - - - 2.967 50 - - - - - 2.967 51 - - - - - 2.967 52 - - - - - 2.967 53 - - - - - 2.967 54 - - - - - 2.967 Print Time/Date.15/05/201511.30 STAAD.Pro V8i 20 07.05.15 Pnnt Run 16 of 19 For7 Job No `Sheet No Rev T.B.D. Result Software licensed to Part Job Title SOUTHOLD LANDFILL Ref By Date1 5-May-15 Chd Client File North Row.std Date/Time 15-May-2015 11:05 Node Loads : 16 BASE NEG MOMENT - ZONE 5 i ; Node FX FY FZ MX MY MZ (kip) (kip) (kip) (kip ft) (kip-ft) (kip"ft) 8 - - - - - 2.876 16 - - - - - 2.876 24 - - - - - 2.876 32 - - - - - 2.876 40 - - - - - 2.876 48 - - - - - 2.876 49 - - - - - 2.876 50 - - - - - 2.876 51 - - - - - 2.876 52 - - - - - 2.876 53 - - - - - 2.876 54 - - - - - 2.876 Node Loads : 17 TRANS EQ Node FX FY FZ MX MY MZ (kip) (kip) (kip) (kip-ft) (klp"ft) (kip ft) 5 0.045 - - - - - 6 0.045 - - - - - 13 0.045 - - - - - 14 0 045 - - - - - 21 0.045 - - - - - 22 0.045 - - - - - 29 0.045 - - - - - 30 0 045 - - - - - 37 0.045 - - - - - 38 0.045 - - - - - 45 0.045 - - - - - 46 0.045 - - - - - Print Time/Date 15/05/201511 30 STAAD Pro V8i 20.07.05.15 Print Run 17 of 19 Job No Sheet No Flo-% Rev AP T.B.D. Result Software licensed to Part Job Title SOUTHOLD LANDFILL Ref By Date15-May-15 Chd Client FileDaterrime North Row.std 15-May-2015 11.05 Node Loads : 18 LONG EQ Node FX FY FZ MX MY MZ (kip) (kip) (kip) (kip'ft) (kip'ft) (kipft) 5 - - 0.045 - - 6 - - 0.045 - - - 13 - - 0.045 - - - 14 - - 0 045 - - - 21 - - 0.045 - - - 22 - - 0.045 - - - 29 - - 0.045 - - - 30 - - 0.045 - - - 37 - - 0.045 - - - 38 - - 0.045 - - - 45 - - 0.045 - - - 46 - - 0.045 - - - Node Displacement Summary Node UC X Y Z Resultant rX rY rZ (in) (in) (in) (in) (rad) (rad) (rad) Max X 9 57•GENERATE 0.064 -0.170 -0.000 0.182 0.000 0.000 ` 0.009 Min X 10 76 GENERATE -0.056 0.136 -0.000 0.148 0.000 0.000 0.007 Max Y 10 76•GENERATE -0.056 0.136 -0 000 0.148 0.000 0.000 0.007 Min Y 9 57:GENERATE 0 064 -0.170 -0.000 0 182 0.000 0.000 0.009 Max Z 42 37:GENERATE 0.005 -0.014 0.010 0 018 0.000 -0.000 -0.001 Min Z 42 39.GENERATE 0.005 -0.014 -0.010 0.018 -0.000 0.000 -0.001 - Max rX 10 37•GENERATE 0.010 -0.028 0 005 0.030 0.001 0.000 -0.001 Min rX 10 39.GENERATE 0 010 -0.028 -0.005 0.030 -0.001 -0 000 -0.001 Max rY 12 37:GENERATE -0.002 0.004 0.001 0.005 0.001 0.000 -0.000 Min rY 12 39:GENERATE -0.002 0.004 -0 001 0.005 -0.001 -0.000 -0.000 Max rZ 9 57•GENERATE 0.064 -0.170 -0.000 0 182 0.000 0.000 0.009 Min rZ 10 55:GENERATE 0.063 -0.165 -0.000 0.176 -0.000 -0.000 -0.009 Max Rst 9 57:GENERATE 0.064 -0.170 -0.000 0.182 0.000 0.000 0.009 Print Time/Date 15/05/201511 30 STAAD.Pro V8i 20.07.05.15 Print Run 18 of 19 "Al Job No Sheet No Rev T.B.D. 1 Result Software licensed to ..F1........100144 - Part 1111 r Job Title SOUTHOLD LANDFILL Ref - I By Datr1 5-May-15 Chd Client File North Row.std Date/time 15-May-2015 11.05 Beam Force Detail Summary Sign convention as diagrams:-positive above line,negative below line except Fx where positive is compression.Distance d is given from beam end A. Axial Shear Torsion Bending Beam LIC d Fx Fy Fz Mx My Mz (ft) (kip) (kip) (kip) (kip-ft) (kip ft) (kip-ft) Max Fx 73 57:GENERATE 0.000 3.506 0 710 -0.000 -0.000 0.000 0.000 Min Fx 15 76:GENERATE 0.000 -2.443 -0 140 0.002 -0.000 -0.002 -0.476 Max Fy 12 57:GENERATE 0.000 0.279 1.742 0.000 -0.000 -0.000 3.326 Min Fy 9 57 GENERATE 0.000 -0.253 -1.795 -0.000 -0.000 0.000 -0.173 Max Fz 55 20.GENERATE 16.600 -0 000 -0.421 0.153 -0.000 0.000 0.000 Min Fz 33 20:GENERATE 0.000 -0.000 0.421 -0.153 0.000 0.000 0.000 Max Mx 10 39:GENERATE 0.000 0.001 -0.000 0.010 0.026 -0.014 -0.000 Min Mx 10 37:GENERATE 0 000 0.001 -0 000 -0.010 -0.026 0 014 -0.000 Max My 7 37.GENERATE 0.000 0.252 0.001 -0.096 0.000 0.101 0.002 Min My 55 20•GENERATE 8.300 -0.000 0.000 0.000 -0.000 -0.636 -1.748 Max Mz 9 57:GENERATE 1.949 -0 253 -1.795 -0.000 -0 000 -0 000 3.326 Min Mz 39 25.GENERATE 8.300 -0.000 -0 015 -0.000 0.000 -0.188 -4.525 Reaction Summary Horizontal Vertical Horizontal Moment Node LIC FX FY FZ MX MY MZ (kip) (kip) (kip) (kip-ft) , (kip-ft) , (kip'ft) Max FX 53 22:GENERATE 1.586 -1.447 0.002 0.002 -0.000 -1.842 Min FX 53 77•GENERATE -1.202 1.820 -0 000 -0.000 0.000 1.395 Max FY 53 57•GENERATE -0.710 3.506 0.000 0.000 -0 000 0.824 Min FY 16 76:GENERATE 0.140 -2.443 0 002 0.002 -0.000 -0 476 Max FZ 8 39.GENERATE -0.001 0.279 0.096 0.101 -0.000 0.002 Min FZ 8 37:GENERATE -0.001 0.252 -0.096 -0.101 0.000 0.002 Max MX 8 39•GENERATE -0.001 0.279 0.096 0.101 -0 000 0 002 Min MX 8 37:GENERATE -0.001 0.252 -0.096 -0.101 0.000 0.002 Max MY 53 39:GENERATE 0.001 0.532 -0.020 -0.023 0.000 -0.001 Min MY 53 37.GENERATE 0.001 0.532 0.020 0.023 -0.000 -0.001 Max MZ 53 77:GENERATE -1.202 1.820 -0 000 -0 000 0.000 1.395 Min MZ 50 31.GENERATE 0.001 0.532 -0.000 -0.000 0.000 -7.533 Print Time/Date.15/05/201511 30 STAAD Pro V8i 20.07.05.15 Print Run 19 of 19 , 'POST-BEAM END FORCES,(SUMMARY) _, Post 2 LOAD COMBO NODE Fx(kip) P Fy(kip) Fz(kip) Mx(k-ft) My(k-ft) Mz(k-ft)_ Max Fx 73 57 GENERATED IBC 13 3.506 0.71 0 0 0 0 Min Fx 15 76 GENERATED IBC T 16 -2.443 -0.14 0.002 0 -0.002 -0.476 Max Fy 73 77 GENERATED IBC 13 1.82 1.202 0 0 0 0 Min Fy 73 22 GENERATED IBC 13 -1.447 -1.586 -0.002 0 0 0 Max Fz 73 39 GENERATED IBC 13 0.532 -0.001 0.02 0 0 0 Min Fz 73 ' 37 GENERATED IBC 13 0.532 -0.001 -0.02 0 0 0 Max Mx 73 39 GENERATED IBC 13 0.532 -0.001 0.02 0 0 0 Min Mx 73 37 GENERATED IBC 13 0.532 -0.001 -0.02 0 0 0 Max My 73 39 GENERATED IBC T 53 0.532 -0.001 0.02 0 0.023 0.001 Min My 73 37 GENERATED IBC1 53 0.532 -0 001 -0 02 0 -0.023 0.001 Max Mz 73 , 22 GENERATED IBC 53 -1.447 -1.586 -0.002 0 -0.002 1.842 Min Mz 73 77 GENERATED IBC1 53 1.82 1.202 0 0 0 -1.395 TOP CHORD-BEAM END FORCES(SUMMARY) TOP CHORD 2 LOAD COMBO 'NODE Fx(kip) Fy(kip) Fz(kip) Mx(k-ft) My(k-ft) Mz(k-ft) Max Fx 12 22 GENERATED IBC T 13 0.905 -0.891 0.001 0 -0.001 -1.774 Min Fx 11 55 GENERATED IBCT 12 -0.712 -1.48 0 0 0 -0.02 Max Fy 12 57 GENERATED IBC T 13 0.279 1.742 0 0 0 3.326 Min Fy 9 57 GENERATED IBC 9 -0.253 -1.795 0 0 0 -0.173 Max Fz 11 37 GENERATED IBC T 12 -0.09 -0.25 0.031 -0.009 -0.018 0 Min Fz 11 39 GENERATED IBC 12 -0.09 -0.25 -0.031 0.009 0 018 0 Max Mx 10 39 GENERATED IBC 11 0.001 0 0.01 0.026 -0 014 0 Min Mx 10 37 GENERATED IBC 11 0.001 0 -0.01 -0.026 0.014 0 Max My 12 39 GENERATED IBC1 13 0.092 0.25 -0.027 0.011 0.044 0 486 Min My 12 37 GENERATED IBC 13 0.092 0.25 0.027 -0.011 -0.044 0.486 Max Mz 9 57 GENERATED IBC1 13 -0.253 -1.795 0 0 0 3.326 Min Mz 11 76 GENERATED IBC T 14 0.759 1.232 0.001 0 0.001 -2.364 rill. ��/�`/' JOB TITLE SOUTHOLD LANDFILL rts j / , �,�� t* pp t-s JOB NO.T.B D. SHEET NO. RBI SOLAR CALCULATED BY xxx DATE 5/15/2015 CHECKED BY DATE Purlin Design and Analysis Zone: Zone 2 Mechanical Properties Fy=Yeild Strength 50.0 ksi E=Modulus of Elasticity 29000.0 ksi 0..b-Bending Factor 1.67 no-Comp.Factor 1.8 Cm-for simple beam 1 R-for Simple Span 0.65 r _ f e ie----4T L '�°p4�=�i'r,>�SF.ta s,�..: ._,�r.� , %°'�_��R-1-'4,,L''' .,�a d 0.911 2 Solar Purlin , Section Wt'lb/ft Area(in`) So,. Sa„„, I. V.(kips) M„(k.in) P”(kips) 7”Z 16 GA 2 595 0.545 1.479 1.477 5.463 2.695 46.64 6.161 Le Span 16.6 ft Design Forces bb,=Tributary Width 3.28 ft M, =W`bbi*L2/8 40.84 kip.in wp Purlin wt. 0.79 psf V,„ W*bb U2 0.82 kips wpi=Panels wt. 2 80 psf Rmex Vm. 0.82 kips whe Collateral Load 0.00 psf Flexural Stress,Check-Flexure about x-x WDL=E(wp+wpl+whg) 3.59 psf Flexure Check x-x - PASS WL=Snow(Live)Load 11.48 psf Shear Check x-x PASS Wx Wind Load 23.85 psf Ww Wind Load UPLIFT 22.97 psf Check Uplift Wind Deflection Check Mmax(Ww WDL)*bb`LZ/8 26.30 kip.in Sact 5/384*(WDL+WL)*boL4/(E*I0 1 07 in M,,R*San*a*Fy 48.00 kip.in Sat U120 1.66 in Maii=MN12b 28.74 kip.in OK OK DL+WL+LL Combination 12exn2iE*I„/(KL)2 I 39.44 k I ax 1-(S2„*P/Pex) 1 Eq.6.53 C,=P/Pe+C,„.M/(a,*Me) 0.875619 Eq.6 54 C2=P/Pa+M/(Ma) 0 875619 Eq.6.54 if(P/Pa<=0.15,C2,C1) 0.875619 OK Max Stress Ratio= (0.914904 • STEEL BEAM AND COLUMN ANALYSIS/CODE CHECK Stress Code Check Per AISC 13th Edition Manual(ASD) For W,S,M,and HP Shapes Project Name• SOUTHOLD LANDFILL Client. SunEdison Project No.. T.B.D. Prep.By xxx I Date: • 5/15/2015 Input Data: Post 2 Member Size: Member Properties:_ Y Select i W6x8.5 I A= 2 52 in^2 I d= 5 830in j 4 tf=0 195 Member Loadin s: tw= 0• .170_-in — P= 1 45 kips bf= 3.940—in Mx=�'1.84 ft-kips tf= 0 195 in My= 0 00 ft-kips k=_ 0• 445—in. d=5 83 — — — —•— -X rIx=_ 14.90 m^4 Design Parameters: Sx= 5• .10 in^3 ) ( tw=0 17 Fy= ! 50.00 ksi rx= 2.43 in — Kx= 1 20 Zx= 5-73 in^3 I' bf=3 94 Ky= 1 20 Iy=' 1.99 in^a Lx= 3.410 _ft Sy= 1 01 in^3 W6x8.5 Section Ly=— 3410 ft ry= 0.89 in Lb= 3 410ft Zy= 1.56 in^3 Sha.- Factors: Flex.Type= --ging—le--- J= 0.033 in^4 SFx= 1 12 Cb= 1 67 Cw= 15.8 in^6 SFy=—1.54 Results: For Axial Compression: For X-axis Bending:_ For Y-axis Bending: Kx*Lx/rx= 20.21 __ Lp= 3.14 ft fby= 0 02 ksi Ky*Ly/ry=_ 55.17 Lr= 9 47 _ft Fby= 44 63 ksi Fe= 94.03its= 1.05 Mry= 3 76 ft-kips fa= 0.57 ^ksi fbx= 4.33 ksi Fa= 23.97 ksi Fbx= 32 83 ksi Pa= 60.39 kips Mrx= 13.95 ft-kips 1 ; Nodal Lat.Brcq Requirements: Nodal Lat.Brcq Requirements: • Pbr= 0 01 kips Pbr=I0.08 kips 1313r= - 0.57 kip/in pbr= 1 92 kip/in Stress Ratio: S.R =I 0.145 IEqn.H1-lb < S.R <1,Member is adequate for loading Comments: 5/15/2015 Z.\Engineering Projects\RBI Solar\SOUTHOLD,NY\ Page 2 11 27 AM Engineering Request-SunEdison-Southold LANDFILL NY-2015-5-14(20 degrees) of 8 Top Cliord Design`-Compression Member Input Data. - - - I 4,TOP'_CHORD.2 Member Section 4x4x14ga t A=Tube Width 4 in ri B= Tube Length 4 in _ ix - � c4---,R=Corner Inner Radius 0.09375 in t=Thickness 0.083 in i KLx=Buckling around x-x 1.95 ft KLy=Buckling around y-y 3.9 ft I E=Modulus of Elasticity 29500 ksi Fy=Yield Stress 50 ksi _, 1 G=Shear Modulus 11300 ksi 1 Yi 0 - _. .. . :Calculated:Parameter: --. - -,,-::4-,, .,- _ - :-V r...., ..AOpliedForces.. 1-Properties of 90°corner M 3.326 kip.ft r=R+t/2, Centerline of Dimension 0.135 in P 0.00001 kips u=it.r/2,Arc Length 0 212 in c=0.637.r Distance of c.g from center_ 0.086 in 2-Flat widths of flanges and webs Flat width of Dim a=A-(2 r+t) 3 6465 _ in Flat width of Dim b=B-(2 r+t) 3.6465 in _ -, . 'Calculation oflx , , a„ .,. . Element L, Length(in) Y, Distance to the center(in) L xY2 I,' Flanges 2.a 7 293 B/2-t/2 1.959 27.974 0 000 _ , Web 2.b 7 293 0 0 000 0.000 8.081 Corners 4.0 0.850 b/2+c 1 909 3 098 0.000 Sum 15 436 3.868 31.072 8 081 Calculation of`I;; _` - Element L, Length(in) X, Distance to the center(in) L x X2 I ' Y Flanges 2.a 7.293 0 0:000 0.000 8.081 Web 2.b 7.293 A/2-t/2 1.959 27 974 0.000 Corners 4.0 0 850 a/2+c 1 909 3 098 ' 0.000 Sum 15 436 3.868 31.072 8 081 „s_ ., _ :Section,Properties: .t a .'" ' . v A L x t 1.2812 in` Ix t x(L x Y2"HA 3.2497 in" ly t x(L x X2+ly') 3 2497 in" Sx lx/(B/2) 1.6249 in° Sy lv/(A/2) 1.6249 in° rx (Ix/A)°5 1.5927 in ry (ly/A)°5 1 5927 in i ' ' : '- _ Nominal Buckling,Stress, -, - -, , - . - . • - KLx/rx 14.69 KLy/ry 29 38 KLh 29.38 Fe 7[2.E/(KL/r)2 337.19 ksi kc (Fy/Fe)u b 0.39 Fn 46.99 ksi ' `' . : _ " Effective•Area, , ' ' ' effective width of compression flange w/t=a/t 43.93 A 1 052/(k)°5 x(w/t)x(Fn/n°5 0.92 P (1-0.22/X.)/2t, 0 83 ae 3.01 in effective width of web element w/t=b/t 43.93 A. 1.052/(k)°5 x(wit)x(Fn/E)°5 0.92 p (1-0.22/2.)/A, 0.83 be 3.01 in ' ,"Allowable,Atial,Load- • ' - - Ae Ae=A-2 x t x[(a-ae)+(b-be)l 1.07 int Pn Pn=Ae x Fn 50.28 kips pc 1.80 Pa=Pn inc 27.93 kips 'Checks Compression;_Stresses;. . . ' _ ' , - • - Loads from Wind? Cbl I Cb1=(P/Pa) 0 00 NO Allowable Stress Unity I 1 0.00 Section is OK t. '- "; - Computingtof'Mx By using the effective width of compression flange and assuming the web is fully effective,the neutral axis can be located as follow Element L, Length9in) y, Distance to top fiber(in) L.y L.y2 C. Flanges ae 3.011 t/2 0.042 0.125 0 005 Web 2.b 7.293 - B/2 2.000 14.586 29 172 C Corners 2 u 0.425 c+t/2 0.128 0.054 0.007 T. Flanges ae 3.011 B4/2 3.959 11.917 47 175 T.Corners 2.0 0.425 B-c-t/2 3.872 1.645 6.372 Sum 14.164 10.000 28 328 82.731 Ycg=L.y/L 2.000 Z=R+t 0.177 in 1 The max.stress of 50 ksi ocurs in the compression flange as assumed in the calculation _ '- _ Check the-effectiveness of the Web •- . . . , - fi ()fog-Z)Fy/Ycg 45.58 ksi f2 -(B-Ycg Z)Fy/Ycg -45 58 ksi W f2lfi -1.00 k 4+2(1-03+2(1-W) 24 00 hit bjt 43.93 A, 1.0521(k)°5 x(h/t)x(fi/E)°5 0.37 P (1-0.22/X)/k 110 be 3.65 in b1 • be/(3-w) 0 91 in b2 1.82 in b1+b2 2.73 in 21web I 2(1/12)(b)3 8.08 in4 E(Ly2) 82.73 in4 (-)(EI)(Ycg)2 56.66 in4 lex 34.16 in4 IX I'xt 2 83 in4 Sex=lx/Ycg 1.42 in3 Cb=1.0 for combined axial load and bending moment j 2b2d2t/(b+d) 4 02 in4 Sf fullSx 1.62 in4 L„ 0 36Cbn.(E I.G.j)05/(Fy.Sr) 76.60 ft Fe Cba.(E I.G.fl°5/(L.Sf) 5455.60 ksi - , - - Allowable'B'endingFMomerit _ - Mnx 5.906 kip.ft nb 1.670 Ma=IVlnx/lb 3.537 kip.ft - - Check Stresses _ _ Cmx 0 6-0.4*M1/M2 0.60 Loads from Wind Cbl (P/Pa)+(Cmx Mx/Ma) 0.56 NO Cbl (P/Pa)+(Mx I Ma) 0.94 Allowable Stress Unity I 1 Cb If((P/Pa)<=0.15,Cb2iCbl) 0.94 Section is OK i , 'Knee Brace Design-Compression Member - I_ \ . ' . " ",Input.Data , " ' _ - _ , IKnee�,Brace 2 , Member Section 2x2x15ga A=Tube Width 2 in rl B= Tube Length 2 in s{""`" R=Corner Inner Radius 0.09375 in t=Thickness 0.072 in I KLx=Buckling around x-x 6.28 ft Z--...------4---------2(x ' KLy=Buckling around y-y 6.28 ft I E=Modulus of Elasticity 29500 ksi I Fy=Yield Stress 50 ksi ) r. , G=Shear Modulus 11300 ksi Yi o Calculated"Parameter" - ' - � �. A�piied'Forces, _ - 1-Properties of 90°corner M 0.00001 kip.ft r=R+t/2, Centerline of Dimension 0.130 in P 4.826 kips u=R.r/2,Arc Length 0.204 in c=0.637.r Distance of c.g.from center 0.083 in 2-Flat widths of flanges and webs Flat width of Dim a=A-(2.r+t) 1.6685 in Flat width of Dim b=B-(2.r+t) 1.6685 in - ' .' .: . . Calculation of Ix - _ - ,-1" Element L, Length(in) Y, Distance to the center(in) L xY2 I„' Flanges , 2 a 3.337 B/2-t/2 0 964 3.101 0.000 Web 2.b 3.337 0 0.000 0.000 0.774 Corners 4.0 0.815 b/2+c 0.917 0.685 0.000 Sum 7.489 1.881 3 786 0.774 - - Ca_lculation;of'I,. - , ' ' Element L, Length(in) X, Distance to the center(in) L x X2 I ' Y Flanges 2.a 3.337 0 0.000 0.000 0.774 Web 2.b 3.337 A/2-t/2 0.964 3.101 0.000 Corners 4.0 0.815 a/2+c 0.917 0 685 0 000 Sum 7.489 1.881 3.786 0.774 ' - • • - • .' - Section,Properties. A L x t 0.5392 in2 Ix t x(L x Y2+Ix) 0.3284 in" Ir t x(L x X2-fly') 0.3284 in" Sx Ix/(B/2) 03284 in' Sr I' /(A/2) 0.3284 in" rx (Ix/A)°5 0.7804 in _ ry (Iy/A)u 5 0 7804 in . - . - - - - Nominal'Buckling'Stress. = - KL,JrX 96.56 KLy/ry 96 56 Mir 96.56 Fe 7t2.E/(KL/r)2 31.23 ksi AT (Fy/Fe)°b 1.27 Fn 25.58 ksi ` , , ' - : . Effective:Area ' '- . . effective width of compression flange w/t=a/t 23.17 X, 1.052/(k)°5 x(w/t)x(Fn/E)°5 0.36 p (1-0.22/A.)/X 1.08 ae 1.67 in effective width of web element w/t=b/t 23.17 R 1 052/(k)°5 x(w/t)x(Fn/E)°5 0.36 p (1-0.22/X)/2. 1.08 be 167 in 'Allowable;Axial'Load - -- ' - - , Ae Ae=A-2 x t x[(a-ae)+(b-be)) 0.54 in2 Pn Pn Ae x Fn 13.79 kips On 1.80 Pa=Pn/fIc 7.66 kips - - Check?Compression Stresses -= _ Loads from Wind? Cb, I Cb1=(P/Pe) 0.63 NO Allowable Stress Unity I 1 0.63 Section is OK _. . Computing,ofMna - .- ' By using the effective width of compression flange and assuming the web is fully effective,the neutral axis can be located as follow: Element L, Length Jin) y, Distance to top fiber(in) L.y L.y2 C. Flanges ae 1.669 t/2 0.036 0.060 0.002 Web 2 b 3.337 B/2 1.000 3.337 3.337 C. Corners 2 u 0.408 c+t/2 0.119 0.048 0.006 T. Flanges ae 1.669 B4/2 1.964 3.277 6.436 T.Corners 2.0 0.408 B-c-t/2 1.881 0.767 1.443 Sum 7 489 5.000 7.489 11.224 yc9=L.y/L 1.000 Z=R+t 0 166 in The max stress of 50 ksi ocurs in the compression flange as assumed in the calculation - Check the effectiveness of the Web _ _ ft (Ycg-Z)Fy/Ycg 41.71 ksi f2 -(B-Ycg-Z)Fy/Ycy -41.71 ksi W f2/f1 -1.00 k 4+2(1.403+2(1M 24.00 h/t bait 23.17 X 1 0521(k)°5 x(h/t)x(f1/E)°5 0 19 P (1-0.22/M/7` -094 be 1.67 in b1 be/(3-w) 0.42 in b2 0.83 in b1+b2 125 in 2lweb I 2(1112)(b)3 0.77 in4 E(Ly2) 11.22 in4 (-REI)(Yc9)2 7 49 in4 l'x 4.51 in4 lx=rxt 032 in4 SeX lx/Ycg 0 32 in3 Cb=1.0 for combined axial load and bending moment j 2b2d2t/(b+d) 0.33 in4 Sf fullSx 0.33 in4 L„ 0.36Cba.(E I.G.j)05/(Fy. Sr) 34.73 ft Fe' Cor.(E I.G.j)U5/(L.Sf) 768 23 ksi ' ' Allowable Bending Moment Mnx 1.353 kip.ft r/b 1 670 Ma=Mnx/rib 0 810 kip ft ' = Check Stresses - C„,x 0.6-0.4*M1/M2 0.60 Loads from Wind? Cbl (P/Pe)+(Cmx Mx/Ma) 0.63 NO Cb2 (P/Pa)+(Mx/Ma) 0.63 Allowable Stress Unity I 1 Cb If((P/Pe)<=0 15,Cb2,Cbl) 0.63 Section is OK Foriri‘ Job No Sheet No ((I(Rev T.B.D. Reactionalo J Software licensed to Part Job Title SOUTHOLD LANDFILL Ref By DatE15-May-15 Chd Client File North Row std Date/Time 15-May-2015 11 05 Reaction Summary Horizontal Vertical Horizontal Moment Node L/C FX FY FZ MX MY MZ (kip) (kip) (kip) (kip-ft) (kip"ft) (kip-ft) Max FX 53 22:GENERATE 1.586 -1.447 0.002 0.002 -0 000 -1.842 - Min FX 53 77.GENERATE -1.202 1.820 -0.000 -0.000 0 000 1.395 ' Max FY 53 57-GENERATE -0710 3.506 0.000 0 000 -0 000 0.824 Min FY 16 76:GENERATE 0.140 -2.443 0 002 0.002 -0.000 -0.476 Max FZ 53 37•GENERATE 0 001 0 532 0.020 0 023 -0 000 -0.001 Mm FZ 53 39:GENERATE 0.001 0 532 -0.020 -0.023 0.000 -0.001_ Max MX 53 37-GENERATE 0.001 0 532 0.020 0.023 -0.000 -0 001 Min MX 53 39:GENERATE 0.001 0.532 -0.020 -0.023 0 000 -0.001 Max MY 53 39:GENERATE 0.001 0.532 -0 020 -0.023 0.000 -0 001 Min MY 53 37:GENERATE 0.001 0.532 0 020 0.023 -0.000 -0.001 Max MZ 53 77:GENERATE -1.202 1.820 -0.000 -0 000 0 000 1.395 Min MZ 53 31'GENERATE 0 001 0.532 0.000 0 000 -0.000 -7.533 • • Print Time/Date.15/05/201511.45 STAAD.Pro V8i 20.07 05 15 Print Run 1 of 1 � 4 I , Project Name: SOUTHOLD LANDFILL Project No: T.B.D. Wind Zone: South ROWS Design Criteria: Code: IBC 2009 Dead Load: 5.0 psf Chord Length= 1313 ft -- Roof Live Load: 0.0 psf Ground Snow: 20.0 psf Wind Speed: 120 mph (Exposure C Assumed) Module Tilt: 20.0 deg Purlin Spacing: 3.28 ft Snow Load Calculation:pf=0.7CsCeCtlspg Ce= 1.0 q= 1.2 Is= 0.8 Cs= 0.91 ps 11.5 psf Wind Load Calculation:q=0.00256K,KdK,tV2 Iw K,= 1.00 Mean Roof Height= 33.0 ft(Per CPP Wind Tunnel Analysis) Kd= 0.85 = 1.0 Iw= 0.77 q= 24.2 psf STAAD M1 del,Input',(Z-Pu`rlin Loading) Dead Load: 0.016 klf Roof Live: 0.000 klf Snow Load: 0.038 klf Wind: Balanced Wind(Applied to all purlins): Wind Uplift -0.077 klf -0.057 klf -0.057 klf -0.053 klf -0.053 klf Wind Down 0.066 klf 0.064 klf. 0.065 klf 0.065 klf 0.065 klf Wind: Unbalanced Wind(Applied to lower half of purlins ONLY): . Zone M . 1 2 -3' 4 5,.' Wind Down -0.112 klf -0.107 klf -0.111 klf -0.110 klf -0.109 klf Wind Uplift 0.026 klf 0.023 klf 0.028 klf 0.026 klf 0.026 klf Base Moment: (Downward) -14.150 k-ft -13.785 k-ft -12.780 k-ft -12.507 k-ft -12.233 k-ft Base Moment: (Uplift) 1.643 k-ft 1.369 k-ft 1.278 k-ft 1.278 k-ft 1.461 k-ft NOTE THE DIRECTION OF LOAD 1- ; f 20 0 Degree,Tilt Zone: 1 2 3 4 5 Zone,Width 0 00 ft 13.13 ft 26.27 ft 39.40 ft 52.54 ft (Roof PrEsswe'Coefficients(,Wind'TUnnelPtett Results}'! ` Zone: 1 2 3 4 5 GC.,„ Uplift -0.97 -0 72 -0.72 -0.67 -0.67 Downward 0.83 0.80 0.82 0.82 0.82 ' Roof°Pfessures(p)>gG,u,(psf)}: Zone: 1 2 3 4 5 Uplift -23:37 -17.33 -17.33 46.12 -16.12 Downward 20.15 19.34 19.74_ 19.74 19.74 Base rof'Post coefficients,((Wind'Tunnel Test Result* Zone: 1 2 3 4 5 GC,,,,, Negative -0.26 -0 25 -0.23 -0 23 -0.22 Positive 0.03 0.03 0.02 0.02 0.03 'Base of Post,! omoots:(JVI,y=~( tl .. Zone: 1 2 3 4 5 Negative(Downward) -14.15 k-ft -13.78 k-ft -12.78 k-ft -12.51 k-ft -12.23 k-ft Positive(Uplift) 0.13 k-ft 0.10 k-ft 0.10 k-ft 0.10 k-ft 0.11 k-ft 1 `!bWer,PUrlin Coefficients(Wild Zone: 1 2 3 4 5 4'GCMHy Negative -1.41 -1.35 -1.40 -1.39 -1.37 Positive 0.33 0 29 0.35 0.33 0.33 - , ;'ow-et Polk Pressures'(p=qrGCMH04)'{psf) Zone: 1 2 3 4 5 1Negative'(Downward) -34 17 -32.72 -33.85 --33.52 -33.20 Positive(Uplift) 7.90 6 93 8.38 8.06 8.06 iJob No Sheet No Rev t. T.B.D. SK-1 Software licensed to Part Job no,SOUTHOLD LANDFILL Ref By Date15-May-15 Chd Client Foe South Row std Datemme 15-May-2015 12 37 nB"3' .a'; \ \ \',. °'a °it IIA\ \\Ns \\ N °�8, \ \ 1a` r \ \ °1�'2 \ \ N. \ beg 2g. 13.34 \ 8 �0,\ \\ sag 5 \ \, \° \ \\ \ -2 \ b43, 1D41 SK-1 Pent Time/Date 15/05/201514 33 STAAD Pro V8i 20 07 05 15 Print Run 1 of 1 J Job No I Sheet No Rev Software licensed to Pert T.B.D. SFC-2 ' Job Title SOUTHOLD LANDFILL Ref By Date15-May-15 Chd Client File South Row std Deterttme 15-May-2015 12 37 J°. I • \‘ .4.\` � ;.\ `\\\,, '9.4\\\ N\ \N. ...... \ ‘.\\1 ;Oft ‘• °. 90ft \ 00ft�'\ \� N. N • f. N \ b N N. `;sat ''..--°45: © �O \ ° �•D a1n ki' 16ft N\ \ ; \\e \ b \q e� .\ \ \ bb \\� • � \ \° ,,6 \ trft '0, ..2°, N. a' \®\ \\ vi No‘ \ ° ,O ;60ft ° • e 113 SK-2 � Pont Time/Date 15/05/2015 14 34 STAAD Pro V8120 07 05 15 Pnnt Run 1 of 1 , i Froris4 Job No Sheet No Rev T.B.D. Result Software licensed to Part Job Title SOUTHOLD LANDFILL Ref By Date15-May-15 Chd Client File South Row std Date/Time 15-May-2015 12:37 Nodes i Node X Y Z (ft) (ft) (ft) 1 0.000 0.612 0 000 2 9 834 4 191 0.000 3 3.663 1945 0.000 4 6.171 2 858 0.000 5 1 831 1.279 0 000 6 8.002 3.525 0.000 8 8.002 0.118 0.000 9 0.000 0.612 16.600 10 9.834 4.191 16.600 11 3.663 1.945 16.600 12 6.171 2.858 16.600 13 1.831 1.279 16.600 14 8.002 3.525 16.600 _ 16 8 002 0.118 16.600 17 0.000 0.612 33 200 18 9.834 4.191 33.200 19 3.663 1945 33.200 20 6 171 2.858 33.200 21 1.831 1.279 33.200 22 8 002 3.525 33.200 24 8 002 0 118 33.200 25 0 000 0.612 49.800 26 9 834 4.191 49 800 27 3.663 1.945 49 800 28 6.171 2.858 49.800 29 1.831 1.279 49.800 ' 30 8.002 3 525 49.800 , - 32 8 002 0.118 49.800 33 0 000 0 612 66.400 34 9 834 4 191 66.400 , 35 3.663 1.945 66 400 36 6 171 2.858 66 400 37 1.831 1.279 66 400 38 8.002 3.525 66.400 40 8.002 0118 66.400 41 0.000 0.612 83.000 42 9.834 4.191 83.000 • _ 43 3.663 1 945 83 000 44 6.171 2.858 83.000 45 1 831 1.279 83.000 46 8.002 3.525 83.000 48 8 002 0 118 83.000 49 1.831 0118 83.000 50 1831 0118 66.400 r 51 1.831 0.118 49.800 Print Time/Date 15/05/2015 14 31 STAAD.Pro V8i 20 07.05 15 Print Run 1 of 19 IN Job No - Sheet No Rev , , T.B.D. Result Software licensed to Part r Job Title SOUTHOLD LANDFILL Ref By Date.'5444_15 Chd Client File South Row std Date/Time 15-May-2015 12 37 Nodes Cont... Node X Y Z (ft) (ft) (ft) 52 1.831 0.118 33.200 53 1 831 0 118 16.600 54 1.831 0 118 0.000 55 8.002 0.618 0.000 56 8 002 0.618 16.600 Beams Beam Node A Node B Length Property S (ft) (degrees) 1 1 5 1.949 2 0 2 3 4 2.669 2 0 3 4 6 1.949 2 0 4 5 3 1.949 2 0 5 6 2 1.949 2 0 7 8 55 0 500 1 0 ' 9 9 13 1.949 2 0 10 11 12 2.669 2 0 11 12 14 1.949 2 0 12 13 11 1.949 2 0 13 14 10 1.949 2 0 . 15 16 56 0.500 1 0 17 17 21 1.949 2 0 18 19 20 2.669 2 0 19 20 22 1949 2 0 20 21 19 1.949 2 0 ' 21 22 18 1 949 2 0 23 24 22 3.407 1 0 25 25 29 1.949 2 0 26 27 28 2.669 2 0 27 28 30 1.949 2 0 28 29 27 1949 2 0 29 30 26 1.949 2 0 31 32 30 3.407 1 0 33 2 10 16 600 3 20 . 34 10 18 16 600 3 20 35 18 26 16.600 3 20 36 4 12 16.600 3 20 37 12 20 16.600 3 20 38 20 28 16 600 3 20 39 3 11 16 600 3 20 40 11 19 16.600 3 20 - 41 19 27 16.600 _ 3 20 42 1 9 16.600 3 20 Print Time/Date 15/05201514 31 STAAD Pro V8120.07.05.15 Print Run 2 of 19 Job No Sheet No Rev T.B.D. Result mu% Software licensed to Part Job Title SOUTHOLD LANDFILL Ref By Date15-May-15 Chd Client File South Row.std Date/Time 15-May-2015 12.37 Beams Cont... Beam Node A Node B Length Property p (ft) (degrees) 43 9 17 16.600 3 20 I , 44 17 25 16 600 3 20 47 33 37 1949 2 0 48 35 36 2.669 2 0 49 36 38 1.949 2 0 50 37 35 1 949 2 0 51 38 34 1 949 2 0 53 40 38 3.407 1 0 55 26 34 16.600 3 20 56 28 36 16 600 3 20 57 27 35 16.600 3 20 58 .25 33 16 600 3 20 59 41 45 1.949 2 0 60 43 44 2.669 2 0 61 44 46 1949 2 0 62 45 43 1.949 2 0 63 46 42 1 949 2 0 65 48 46 3.407 1 0 67 34 42 16 600 3 20 68 36 44 16.600 3 20 69 35 43 16.600 3 20 70 33 41 16 600 3 20 I 71 45 49 1161 1 0 ' 72 37 50 ' 1.161 1 0 73 29 51 1.161 1 0 74 21 52 1 161 1 0 75 13 53 1.161 1 0 76 5 54 1.161 1 0 77 55 6 2'907 1 0 I ' 78 56 14 2.907 1 0 79 6 56 16.853 3 0 80 14 55 16.853 3 0 Print Time/Date 15/05/201514.31 STAAD.Pro V81 20 07.05.15 Print Run 3 of 19 Job No Sheet No Rev T.B.D. Result - - Software licensed to Part Job Title SOUTHOLD LANDFILL Ref By Date15-May-15 Chd Client File South Row std Date/time 15-May-2015 12.37 Basic Load Cases Number Name 1 DEAD LOAD 2 SNOW LOAD 3 UPLIFT 4 DOWN 5 UNBALANCED UPLIFT 6 UNBALANCED DOWN 7 BASE POS MOMENT-ZONE 1 8 BASE POS MOMENT-ZONE 2 9 BASE POS MOMENT-ZONE 3 10 BASE POS MOMENT-ZONE 4 11 BASE POS MOMENT-ZONE 5 12 BASE NEG MOMENT-ZONE 1 13 BASE NEG MOMENT-ZONE 2 14 BASE NEG MOMENT-ZONE 3 15 BASE NEG MOMENT-ZONE 4 16 BASE NEG MOMENT-ZONE 5 17 TRANS EQ 18 LONG EQ Combination Load Cases Comb. Combination UC Name Primary Primary UC Name Factor 19 GENERATED IBC TABLE7ASD241 1 1 DEAD LOAD 1.00 20 GENERATED IBC TABLE7ASD241 2 1 DEAD LOAD 1.00 2 SNOW LOAD 1 00 21 GENERATED IBC TABLE7ASD241 3 1 DEAD LOAD 1.00 2 SNOW LOAD 0.75 22 GENERATED IBC TABLE7ASD241 4 1 DEAD LOAD 1.00 3 UPLIFT 1.00 23 GENERATED IBC TABLE7ASD241 5 1 DEAD LOAD 1 00 4 DOWN 1.00 24 GENERATED IBC TABLE7ASD241 6 1 DEAD LOAD 1 00 5 UNBALANCED UPLIFT 1.00 25 GENERATED IBC TABLE7ASD241 7 1 DEAD LOAD 1.00 6 UNBALANCED DOWN 1.00 26 GENERATED IBC TABLE7ASD241 8 1 DEAD LOAD 1.00 7 BASE POS MOMENT-ZONE 1 1.00 27 GENERATED IBC TABLE7ASD241 9 1 DEAD LOAD 1.00 8 BASE POS MOMENT-ZONE 2 1.00 28 GENERATED IBC TABLE7ASD241 10 1 DEAD LOAD 1 00 9 BASE POS MOMENT-ZONE 3 1.00 29 GENERATED IBC TABLE7ASD241 11 1 DEAD LOAD 1.00 10 BASE POS MOMENT-ZONE 4 1 00 Print Time/Date 15/05/201514 31 STAAD.Pro V8i 20 07 05 15 Print Run 4 of 19 Fari Job No Sheet No Rev T.B.D. Result Software licensed to Part Job Title SOUTHOLD LANDFILL Ref By Date15-May-15 Chd Client File South Row.std Date/time 15-May-2015 12:37 Combination Load Cases Cont... Comb. Combination L/C Name Primary Primary UC Name Factor 30 GENERATED IBC TABLE7ASD241 12 1 DEAD LOAD 1.00 11 BASE POS MOMENT-ZONE 5 1.00 31 GENERATED IBC TABLE7ASD241 13 1 DEAD LOAD 1.00 12 BASE NEG MOMENT-ZONE 1 1.00 32 GENERATED IBC TABLE7ASD241 14 1 DEAD LOAD 1.00 13 BASE NEG MOMENT-ZONE 2 1.00 33 GENERATED IBC TABLE7ASD241 15 1 DEAD LOAD 1.00 14 BASE NEG MOMENT-ZONE 3 1 00 34 GENERATED IBC TABLE7ASD241 16 1 DEAD LOAD 1.00 15 BASE NEG MOMENT-ZONE 4 1.00 35 GENERATED IBC TABLE7ASD241 17 1 DEAD LOAD 1.00 16 BASE NEG MOMENT-ZONE 5 1.00 36 GENERATED IBC TABLE7ASD241 18 1 DEAD LOAD 1.00 17 TRANS EQ 0.70 37 GENERATED IBC TABLE7ASD241 19 1 DEAD LOAD 1.00 18 LONG EQ 0.70 38 GENERATED IBC TABLE7ASD241 20 1 DEAD LOAD 1.00 17 TRANS EQ -0.70 39 GENERATED IBC TABLE7ASD241 21 1 DEAD LOAD 1.00 18 LONG EQ -0.70 40 GENERATED IBC TABLE7ASD241 22 1 DEAD LOAD 1 00 3 UPLIFT 0 75 41 GENERATED IBC TABLE7ASD241 23 1 DEAD LOAD 1.00 4 DOWN 0 75 42 GENERATED IBC TABLE7ASD241 24 1 DEAD LOAD 1.00 5 UNBALANCED UPLIFT 0.75 43 GENERATED IBC TABLE7ASD241 25 1 DEAD LOAD 1.00 6 UNBALANCED DOWN 0.75 44 GENERATED IBC TABLE7ASD241 26 1 DEAD LOAD 1.00 7 BASE POS MOMENT-ZONE 1 0.75 45 GENERATED IBC TABLE7ASD241 27 1 DEAD LOAD 1.00 8 BASE POS MOMENT-ZONE 2 0.75 46 GENERATED IBC TABLE7ASD241 28 1 DEAD LOAD 1.00 9 BASE POS MOMENT-ZONE 3 0.75 47 GENERATED IBC TABLE7ASD241 29 1 DEAD LOAD 1 00 10 BASE POS MOMENT-ZONE 4 0.75 48 GENERATED IBC TABLE7ASD241 30 1 DEAD LOAD 1.00 11 BASE POS MOMENT-ZONE 5 0.75 49 GENERATED IBC TABLE7ASD241 31 1 DEAD LOAD 1.00 12 BASE NEG MOMENT-ZONE 1 0 75 50 GENERATED IBC TABLE7ASD241 32 1 DEAD LOAD 1.00 13 BASE NEG MOMENT-ZONE 2 0.75 51 GENERATED IBC TABLE7ASD241 33 1 DEAD LOAD 1.00 14 BASE NEG MOMENT-ZONE 3 0 75 52 GENERATED IBC TABLE7ASD241 34 1 DEAD LOAD 1.00 Print Time/Date'15/05/201514 31 STAAD.Pro V8i 20.07.05.15 Pont Run 5 of 19 Job No Sheet No Rev FjoiT4 T.B.D. Result Part Software licensed to Job Title SOUTHOLD LANDFILL Ref By DatE15-May-15 Chd Client F1e South Row.std Date/rime 15-May-2015 12.37 Combination Load Cases Cont... Comb. Combination LIC Name Primary Primary LIC Name Factor 15 BASE NEG MOMENT-ZONE 4 0.75 53 GENERATED IBC TABLE7ASD241 35 1 DEAD LOAD 1.00 16 BASE NEG MOMENT-ZONE 5 0.75 54 GENERATED IBC TABLE7ASD241 36 1 DEAD LOAD 1.00 3 UPLIFT 0 75 2 SNOW LOAD 0.75 55 GENERATED IBC TABLE7ASD241 37 1 DEAD LOAD 1.00 4 DOWN 0.75 2 SNOW LOAD 0 75 56 GENERATED IBC TABLE7ASD241 38 1 DEAD LOAD 1.00 5 UNBALANCED UPLIFT 0.75 2 SNOW LOAD 0 75 57 GENERATED IBC TABLE7ASD241 39 1 DEAD LOAD 1.00 6 UNBALANCED DOWN 0.75 2 SNOW LOAD 0 75 58 GENERATED IBC TABLE7ASD241 40 1 DEAD LOAD 1.00 7 BASE POS MOMENT-ZONE 1 0.75 2 SNOW LOAD 0 75 59 GENERATED IBC TABLE7ASD241 41 1 DEAD LOAD 1.00 8 BASE POS MOMENT-ZONE 2 0.75 2 SNOW LOAD 0.75 60 GENERATED IBC TABLE7ASD241 42 1 DEAD LOAD 1.00 9 BASE POS MOMENT-ZONE 3 0.75 2 SNOW LOAD 0.75 61 GENERATED IBC TABLE7ASD241 43 1 DEAD LOAD 1.00 10 BASE POS MOMENT-ZONE 4 0.75 2 SNOW LOAD 0 75 62 GENERATED IBC TABLE7ASD241 44 1 DEAD LOAD 1.00 11 BASE POS MOMENT-ZONE 5 0.75 2 SNOW LOAD 0.75 63 GENERATED IBC TABLE7ASD241 45 1 DEAD LOAD 1 00 12 BASE NEG MOMENT-ZONE 1 0.75 2 SNOW LOAD 0.75 64 GENERATED IBC TABLE7ASD241 46 1 DEAD LOAD 1.00 13 BASE NEG MOMENT-ZONE 2 0.75 2 SNOW LOAD 0.75 65 GENERATED IBC TABLE7ASD241 47 1 DEAD LOAD 1.00 14 BASE NEG MOMENT-ZONE 3 0.75 2 SNOW LOAD 0.75 66 GENERATED IBC TABLE7ASD241 48 1 DEAD LOAD 1.00 15 BASE NEG MOMENT-ZONE 4 0 75 2 SNOW LOAD 0.75 67 GENERATED IBC TABLE7ASD241 49 1 DEAD LOAD 1.00 16 BASE NEG MOMENT-ZONE 5 0.75 2 SNOW LOAD 0.75 Print Time/Date•15/05/201514 31 STAAD.Pro V8i 20 07.05.15 Print Run 6 of 19 Job No Sheet No Rev T.B.D. Result - Software licensed to Part , Job Title SOUTHOLD LANDFILL Ref By Date15-May-15 Chd Client File South Row std Date/Time 15-May-2015 12:37 Combination Load Cases Cont... Comb. Combination LIC Name Primary Primary LIC Name Factor 68 GENERATED IBC TABLE7ASD241 50 1 DEAD LOAD 1.00 17 TRANS EQ 0.52 69 GENERATED IBC TABLE7ASD241 51 1 DEAD LOAD 1.00 18 LONG EQ 0.52 70 GENERATED IBC TABLE7ASD241 52 1 DEAD LOAD 1.00 17 TRANS EQ 0.52 2 SNOW LOAD 0.75 71 GENERATED IBC TABLE7ASD241 53 1 DEAD LOAD 1.00 18 LONG EQ 0.52 2 SNOW LOAD 0 75 72 GENERATED IBC TABLE7ASD241 54 1 DEAD LOAD 1.00 17 TRANS EQ -0.52 I 73 GENERATED IBC TABLE7ASD241 55 1 DEAD LOAD � 1.00 18 LONG EQ -0.52 74 GENERATED IBC TABLE7ASD241 56 1 DEAD LOAD 1.00 17 TRANS EQ -0.52 2 SNOW LOAD 0.75 75 GENERATED IBC TABLE7ASD241 57 1 DEAD LOAD 1.00 18 LONG EQ -0.52 2 SNOW LOAD 0 75 76 GENERATED IBC TABLE7ASD241 58 1 DEAD LOAD 0.60 3 UPLIFT 100 77 GENERATED IBC TABLE7ASD241 59 1 DEAD LOAD 0.60 4 DOWN 1.00 78 GENERATED IBC TABLE7ASD241 60 1 DEAD LOAD 0.60 5 UNBALANCED UPLIFT 1.00 79 GENERATED IBC TABLE7ASD241 61 1 DEAD LOAD 0.60 6 UNBALANCED DOWN 1.00 80 GENERATED IBC TABLE7ASD241 62 1 DEAD LOAD 0.60 7 BASE POS MOMENT-ZONE 1 1.00 81 GENERATED IBC TABLE7ASD241 63 1 DEAD LOAD 0.60 8 BASE POS MOMENT-ZONE 2 1.00 82 GENERATED IBC TABLE7ASD241 64 1 DEAD LOAD 0.60 9 BASE POS MOMENT-ZONE 3 1.00 83 GENERATED IBC TABLE7ASD241 65 1 DEAD LOAD 0.60 10 BASE POS MOMENT-ZONE 4 1.00 84 GENERATED IBC TABLE7ASD241 66 1 DEAD LOAD 0.60 11 BASE POS MOMENT-ZONE 5 1.00- 85 GENERATED IBC TABLE7ASD241 67 1 DEAD LOAD 0.60 12 BASE NEG MOMENT-ZONE 1 1.00 86 GENERATED IBC TABLE7ASD241 68 1 DEAD LOAD 0.60 13 BASE NEG MOMENT-ZONE 2 1.00 87 GENERATED IBC TABLE7ASD241 69 1 DEAD LOAD 0.60 14 BASE NEG MOMENT-ZONE 3 1 00 ,88 GENERATED IBC TABLE7ASD241 70 1 DEAD LOAD 0.60 Print Time/Date 15/05/201514 31 STAAD.Pro V8i 20.07.05.15 Print Run 7 of 19 FA167 . Job No Sheet No Rev T.B.D. Result A , -.. Software licensed to Part Job Title SOUTHOLD LANDFILL Ref - By Date15-May-15 Chd Client File South Row std Date/Time 15-May-2015 12.37 Combination Load Cases Cont... Comb. Combination L/C Name Primary Primary UC Name Factor 15 BASE NEG MOMENT-ZONE 4 1.00 89 GENERATED IBC TABLE7ASD241 71 1 DEAD LOAD 0.60 16 BASE NEG MOMENT-ZONE 5 1.00 90 GENERATED IBC TABLE7ASD241 72 1 DEAD LOAD 0.60 17 TRANS EQ 0.70 91 GENERATED IBC TABLE7ASD241 73 1 DEAD LOAD 0.60 18 LONG EQ 0.70 92 GENERATED IBC TABLE7ASD241 74 1 DEAD LOAD 0.60 17 TRANS EQ -0.70 93 GENERATED IBC TABLE7ASD241 75 1 DEAD LOAD 0.60 18 LONG EQ -0.70 Beam Loads : 1 DEAD LOAD Beam Type Direction Fa Da Fb Db Ecc. (ft) (ft) 33 UNI Ibf/ft GY -16 000 - - - - 34 UNI Ibf/ft GY -16.000 - - - - 1 35 UNI Ibf/ft GY -16.000 - - - - 36 UNI Ibf/ft GY -16.000 - - - - 37 UNI Ibf/ft GY -16 000 - - - - 38 UNI Ibf/ft GY -16.000 - - - - 39 UNI Ibf/ft GY • -16.000 - - - - 40 UNI Ibf/ft GY -16 000 - - - - 41 UNI Ibf/ft GY -16.000 - - - - 42 UNI Ibf/ft GY -16.000 - - - - 43 UNI Ibf/ft GY -16.000 - - - - 44 UNI Ibf/ft GY -16 000 - - - - 55 UNI Ibf/ft GY -16.000 - - - - 1 56 UNI Ibf/ft GY -16.000 - - - - 57 UNI Ibf/ft GY -16.000 - - - - 58 UNI Ibf/ft GY -16.000 - - - - 67 UNI Ibf/ft GY -16.000 - - - - 68 UNI Ibf/ft GY -16.000 - - - - 69 UNI Ibf/ft GY -16.000 - - - - 70 UNI Ibf/ft GY -16.000 - - - - Print Time/Date 15/05201514 31 STAAD Pro V8i 20.07.05 15 Print Run 8 of 19 `FritriN Job No Sheet No Rev T.B.D. Result 4111114 Software licensed to Part Job Title SOUTHOLD LANDFILL Ref By Date15-May-15 Chd Client File South Row.std Dateline 15-May-2015 12:37 1 Beam Loads : 2 SNOW LOAD Beam Type Direction Fa Da Fb Db Ecc. (ft) (ft) 33 UNI Ibf/ft GY • -38.000 - - - - 34 UNI Ibf/ft GY -38.000 - - - - I 35 UNI Ibf/ft GY -38.000 - - - - 36 UNI Ibf/ft GY -38.000 - - - - 37 UNI Ibf/ft GY -38.000 - - - - 38 UNI Ibf/ft GY -38.000 - - - - 39 UNI Ibf/ft GY -38 000 - - - - 40 UNI Ibf/ft GY -38.000 - - - - 41 UNI Ibf/ft GY -38.000 - 42 UNI Ibf/ft GY -38 000 - - - - 43 UNI Ibf/ft GY -38.000 - - - - 44 UNI Ibf/ft GY -38.000 - - - - 55 UNI Ibf/ft GY -38.000 - - - - '-- 56 UNI Ibf/ft GY -38.000 - - - - 57 UNI Ibf/ft GY -38.000 - - - - 58 UNI Ibf/ft GY -38.000 - - - - 67 UNI Ibf/ft GY ,-38.000 - - - - 68 UNI Ibf/ft GY -38.000 - - - - 69 UNI Ibf/ft GY -38.000 - 70 UNI Ibf/ft GY -38.000 - - - - Beam Loads : 3 UPLIFT ! Beam Type Direction Fa Da Fb Db Ecc. (ft) (ft) 33 UNI Ibf/ft Y 77.000 0.000 - 13.134 - UNI Ibf/ft Y 57 000 13.134 - 16.600 - 34 UNI Ibf/ft Y 57.000 0.000 - 9.668 - UNI Ibf/ft Y 57.000 9.668 - 16.600 - 35 UNI Ibf/ft Y 57.000 0.000 - 6.202 UNI Ibf/ft Y 53 000 6.202 - 16 600 - 36 UNI Ibf/ft Y 77.000 0.000 - 13.134 - UNI Ibf/ft Y 57 000 13.134 - 16.600 - 37 UNI Ibf/ft Y 57.000 0.000 - 9.668 - UNI Ibf/ft Y 57.000 9.668 - 16.600 - 38 UNI Ibf/ft Y 57.000 0.000 - 6.202 - UNI Ibf/ft Y 53 000 6.202 - 16.600 - 39 UNI Ibf/ft Y 77.000 0.000 - 13.134 - UNI Ibf/ft Y 57.000 13.134 - 16 600 - 40 UNI Ibf/ft Y 57.000 0.000 - 9.668 - UNI Ibf/ft Y 57.000 9.668 - 16.600 - 41 UNI Ibf/ft Y 57.000 0.000 - 6.202 - UNI Ibf/ft Y 53.000 6.202 - 16.600 - 42 UNI Ibf/ft Y 77 000 0 000 - 13.134 - Print Time/Date 15/05/2015 1 4.31 STAAD.Pro V8i 20.07.05.15 Print Run 9 of 19 . F.0074 Job No Sheet No Rev T.B.D. Result Software licensed to Part Job Title SOUTHOLD LANDFILL Ref By Date15-May-15 Chd Client File South Row.std Date/Time 15-May-2015 12'37 Beam Loads : 3 UPLIFT Cont... Beam Type Direction Fa Da Fb Db Ecc. (ft) (ft) 42 UNI Ibf/ft Y 57.000 13.134 - 16.600 - 43 UNI Ibf/ft Y 57.000 0.000 - 9.668 - UNI Ibf/ft Y 57.000 9.668 - 16 600 - 44 UNI Ibf/ft Y 57.000 0.000 - 6.202 - UNI Ibf/ft Y 53.000 6.202 - 16.600 - 55 UNI Ibf/ft Y 53.000 0.000 - 2.736 - UNI lbf/ft Y 53.000 2.736 - 16.600 - 56 UNI Ibf/ft Y 53.000 0 000 - 2.736 - UNI Ibf/ft Y 53.000 2.736 - 16 600 - 57 UNI Ibf/ft Y 53.000 0.000 - 2.736 - ' UNI Ibf/ft Y 53.000 2.736 - 16.600 - 58 UNI Ibf/ft Y 53.000 0.000 - 2.736 - UNI Ibf/ft Y 53.000 2.736 - 16.600 - 67 UNI Ibf/ft Y 53 000 - - - - 68 UNI Ibf/ft Y 53.000 - - - - 69 UNI Ibf/ft Y 53.000 - - 70 UNI Ibf/ft Y 53.000 - - - - Beam Loads : 4 DOWN Beam Type Direction Fa Da Fb Db Ecc. (ft) (ft) 33 UNI Ibf/ft Y -66.000 0.000 - 13.134 - 2 UNI Ibf/ft Y -64.000 13.134 - 16.600 - 34 UNI Ibf/ft Y -64.000 0.000 - 9.668 - UNI Ibf/ft Y -65.000 9.668 - 16.600 - 35 UNI Ibf/ft Y -65.000 0.000 - 6.202 - - UNI Ibf/ft Y -65.000 6 202 - 16.600 - 36 UNI Ibf/ft Y -66.000 0.000 - 13.134 - UNI Ibf/ft Y -64.000 13.134 16.600 ' 37 UNI Ibf/ft Y -64.000 0.000 - 9.668 - UNI Ibf/ft Y -65.000 9.668 - 16.600 - 38 UNI Ibf/ft Y -65.000 0 000 - 6 202 - UNI Ibf/ft Y -65.000 6.202 - 16.600 - 39 UNI Ibf/ft Y -66 000 0.000 - 13.134 - UNI Ibf/ft Y -64 000 13.134 - 16.600 - 40 UNI Ibf/ft Y -64.000 0.000 - 9.668 - UNI Ibf/ft Y -65.000 9.668 - 16.600 41 UNI Ibf/ft Y -65.000 0.000 - 6.202 - UNI Ibf/ft Y -65.000 6.202 - 16 600 - 42 UNI Ibf/ft Y -66.000 0.000 - 13.134 - UNI Ibf/ft Y -64.000 13.134 - 16.600 - 43 UNI Ibf/ft Y -64.000 0.000 - 9.668 - UNI Ibf/ft Y -65 000 9 668 - 16.600 - Print Time/Date 15/05/201514 31 STAAD.Pro V8120.07 05 15 Print Run 10 of 19 _71i1 Job No Sheet No Rev T.B.D. Result Software licensed to Part ' 1 Job Title SOUTHOLD LANDFILL Ref By Dat€15..May-15 Chd ClientFile South Row.std Date/time 15-May-2015 12:37 Beam Loads : 4 DOWN Cont... Beam Type Direction Fa Da Fb Db Ecc. (ft) (ft) 44 UNI Ibf/ft Y -65.000 0.000 - 6 202 - UNI Ibf/ft Y -65.000 6202 - 16.600 - 55 UNI Ibf/ft Y -65.000 0 000 - 2 736 - UNI Ibf/ft Y -65.000 2.736 - 16.600 - 56 UNI Ibf/ft Y -65 000 0.000 - 2.736 - UNI Ibf/ft Y -65 000 2.736 - 16.600 - 57 UNI Ibf/ft Y -65.000 0.000 - 2 736 - UNI Ibf/ft Y -65.000 2.736 - 16.600 - 58 UNI Ibf/ft Y -65.000 0.000 - 2.736 - UNI Ibf/ft Y -65 000 2.736 - 16.600 - 67 UNI Ibf/ft Y -65.000 - - - - 68 UNI Ibf/ft Y 65.000 - 1 69 UNI ibf/ft Y -65.00 -0 - - - 70 UNI Ibf/ft Y -65.000 - -- Beam Loads : 5 UNBALANCED UPLIFT Beam Type Direction Fa Da Fb Db Ecc. (ft) (ft) 39 UNI Ibf/ft Y 26.000 0.000 - 13.134 - UNI Ibf/ft Y 23 000 13.134 - 16 600 - 40 UNI Ibf/ft Y 23.000 0 000 - 9.668 - UNI Ibf/ft Y 28.000 9.668 - 16.600 - _ 41 UNI Ibf/ft Y 28.000 0.000 - 6 202 - UNI Ibf/ft Y 26.000 6.202 - 16.600 - 42 UNI Ibf/ft Y 26.000 0.000 - 13.134 - UNI Ibf/ft Y 23.000 13.134 - 16.600 - 43 UNI Ibf/ft Y 23.000 0.000 - 9 668 - -I UNI Ibf/ft Y 28.000 9 668 16.600 44 UNI Ibf/ft Y 28.000 0.000 - '6.202 - UNI Ibf/ft Y 26.000 6 202 - 16 600 - 57 UNI Ibf/ft Y26.000 0 000 - 2.736 - _ UNI Ibf/ft Y 26.000 2.736 - 16 600 - 58 UNI Ibf/ft Y 26.000 0.000 - 2.736 - UNI Ibf/ft Y 26.000 2.736 - 16 600 - 69 UNI Ibf/ft Y 26.000 - - - - 70 UNI Ibf/ft Y 26.000 - - - - Print Time/Date 15/05/201514 31 STAAD.Pro V8i 20.07 05.15 Print Run 11 of 19 Job No Sheet No 1 Rev T.B.D. Result J 4.10 - Software licensed to i Part 1 ' Job Title SOUTHOLD LANDFILL Ref By Date15-May-15 Chd Client File South Row std Date/Time 15-May-2015 12:37 ' Beam Loads : 6 UNBALANCED DOWN � Beam Type Direction Fa Da Fb Db Ecc. (ft) (ft) 39 UNI Ibf/ft Y -112 000 0.000 - 13 134 - UNI Ibf/ft Y -107 000 13 134 - 16.600 - 40 UNI Ibf/ft Y -107.000 0.000 9.668 UNI Ibf/ft Y -111.000 9.668 - 16 600 - 41 UNI Ibf/ft Y -111.000 0.000 - 6.202 - UNI Ibf/ft Y -110.000 6.202 - 16.600 42 UNI Ibf/ft Y -112.000 0 000 - 13 134 - UNI Ibf/ft Y -107 000 13.134 - 16.600 - 43 UNI Ibf/ft Y -107.000 0 000 - 9.668 - UNI Ibf/ft Y -111000" 9.668 16.600 44 UNI Ibf/ft Y -111.000 0.000 - 6.202 - UNI Ibf/ft Y -110.000 _ 6.202 - 16 600 57 UNI Ibf/ft Y -110.000 0.000 - 2.736 - ' UNI Ibf/ft Y -109 000 2.736 - 16.600 - 58 UNI Ibf/ft Y -110 000 0.000 - 2.736 - UNI Ibf/ft Y -109 000 2.736 - 16.600 - 69 UNI Ibf/ft Y -109.000 - - - - 70 UNI Ibf/ft Y -109.000 - - _ - Node Loads : 7 BASE POS MOMENT - ZONE 1 Node FX FY FZ MX MY MZ (kip) (kip) (kip) (kip-ft) (kip-ft) (kip-ft) 8 - - - - - -0 821 16 - - - - - -0.821 24 - -0.821 - - - - 29 -0.821 32 - - - - - -0 821 40 - - - - -0.821 48 - - - - - -0 821 49 - - - - - -0.821 50 - - - - - -0.821 52 - - - - - -0.821 53 - - - - - -0.821 54 - - - - - -0.821 Pnnt Time/Date 15/051201514 31 STAAD Pro V8i 20 07.05.15 Pont Run 12 of 19 Fizer'''64 Job No Sheet No Rev T.B.D. Result Apr Software licensed to Part Job Title SOUTHOLD LANDFILL Ref By Date15-May-15 Chd Client File South Row.std Date/Time 15-May-2015 12 37 Node Loads : 8 BASE POS MOMENT - ZONE 2 Node FX FY FZ MX MY MZ (kip) (kip) (kip) (kip"ft) (kip-ft) (kip ft) 8 - - - - - -0.684 16 - - - - - -0.684 24 - - - - - -0 684 32 - - - - - -0.684 40 - - - - - -0.684 48 - - - - - -0.684 49 - - - - - -0.684 50 - - - - - -0.684 51 - - - - - -0.684 52 - - - - - -0.684 53 - - - - - -0.684 54 - - - - - -0.684 Node Loads : 9 BASE POS MOMENT - ZONE 3 I Node FX FY FZ MX MY MZ (kip) (kip) (kip) (kip"ft) (kip ft) (kip ft) 8 - - - - - -0.639 16 - - - - - -0.639 24 - - - - - -0.639 32 - - - - - -0.639 40 - - - - - -0.639 I ' 48 - - - - - -0.639 49 - - - - - -0.639 50 - - - - - -0 639 51 - - - - - -0.639 52 - - - - - -0.639 53 - - - - - -0.639 54 - - - - - -0.639 Print Time/Date 15/05201514.31 STAAD.Pro V8i 20.07.05.15 Print Run 13 of 19 I, '''NJob No Sheet No Rev T.B.D. Result Software licensed to Part Job Title SOUTHOLD LANDFILL Ref By Date15-May-15 Chd Client File South Row.std Date/Time 15-May-2015 12.37 Node Loads : 10 BASE POS MOMENT - ZONE 4 Node FX FY FZ MX MY MZ (kip) (kip) (kip) (kip'ft) (kip ft) (kip"ft) 8 - - - - - -0.639 16 - - - - - -0.639 24 - - - - - -0.639 32 - - - - - -0.639 40 - - - - - -0.639 48 - - - - - -0.639 49 - - - - - -0.639 50 - - - - - -0.639 51 - - - - - -0.639 52 - - - - - -0.639 , 53 - - - - - -0.639. 54 -0.639 Node Loads : 11 BASE POS MOMENT - ZONE 5 Node FX FY FZ MX MY MZ (kip) (kip) (kip) (kip-ft) (kip-ft) (kip ft) 5 - - - - - -0.730 8 - - - - - -0.730 16 - - - - - -0 730 24 - - - - - -0.730 32 - - - - - -0.730 40 - - - - - -0.730 48 - - - - - -0.730 49 - - - - - -0.730 ' 50 - - - - - -0 730 51 - - - - - -0.730 52 - - - - - -0.730 53 - - - - - -0.730 Print Time/Date:15/05/201514.31 STAAD.Pro V8i 20 07 05.15 Print Run 14 of 19 Job No Part Sheet No . Rev T.B.D. Result %754 Software licensed to Job Title SOUTHOLD LANDFILL Ref 1 By Date15-May-15 Chd ' Client File South Row.std Date/Time 15-May-2015 12.37 Node Loads : 12 BASE NEG MOMENT - ZONE 1 Node FX FY FZ MX MY MZ (kip) (kip) (kip) (kip•ft) (kip'ft) (kip-ft) 8 - - - - - 7.075 16 - - - - - 7.075 24 - - - - - 7.075 32 - - - - - 7.075 40 - - - - - 7.075 48 - - - - - 7.075 49 - - - - - 7.075 50 - - - - - 7.075 51 - - - - - 7.075 52 - - - - - 7.075 53 - - - - - 7.075 54 - - - - - 7.075 Node Loads : 13 BASE NEG MOMENT - ZONE 2 Node FX FY FZ MX MY MZ (kip) (kip) (kip) (kip-ft) (kip-ft) (kip'ft) 8 - - - - - 6.892 16 - - - - - 6.892 24 - - - - - 6.892 32 - - - - - 6.892 40 - - - - - 6.892 48 - - - - - 6.892 • 49 - - - - - 6.892 50 - - - - - 6.892 51 - - - - - 6.892 52 - - - - - 6 892 53 - - - - - 6.892 54 - - - - - 6.892 Pnnt Time/Date.15/05/201514.31 STAAD Pro V8i 20.07.05 15 Print Run 15 of 19 Job No Sheet No Rev T.B.D. Result Software licensed to Part Job Title SOUTHOLD LANDFILL Ref By Date15-May-15 Chd Client File South Row.std Date/Time 15-May-2015 12.37 i Node Loads : 14 BASE NEG MOMENT - ZONE 3 Node FX FY FZ MX MY MZ (kip) (kip) (kip) (kip-ft) (kip-ft) (kip-ft) 8 - - - - - 6 390 • 16 - - - - - 6.390 24 - - - - - 6 390 32 - - - - - 6 390 40 - - - - - 6.390 48 - - - - - 6.390 49 - - - - - 6.390 50 - - - - - 6.390 51 - - - - - 6 390 52 ' - - - . - - 6.390 53 - - - - - 6.390 54 - - - - - 6.390 Node Loads : 15 BASE NEG MOMENT - ZONE 4 � Node FX FY FZ MX MY MZ (kip) (kip) (kip) (kip'ft) (kip-ft) (kip-ft) 8 - - - - - 6.253 16 - - - - - 6.253 24 - - - - - 6.253 32 - - - - - 6.253 40 - - - - - 6.253 48 - - - - - 6.253 49 - - - - - 6.253 50 - - - - - 6.253 51 - - - - - 6 253 52 - - - - - 6.253 53 - - - - - 6.253 54 - - - - - 6.253 1 Print Time/Date 15/05/201514 31 STAAD Pro V8i 20.07.05 15 - Print Run 16 of 19 74 Job No Sheet No Rev T.B.D. Result Part Software licensed to Job Title SOUTHOLD LANDFILL Ref By Date15-May-15 Chd Client File South Row.std Date/Time 15-May-2015 12:37 Node Loads : 16 BASE NEG MOMENT - ZONE 5 Node FX FY FZ MX MY MZ (kip) (kip) (kip) (kip-ft) (kip-ft) (kip-ft) 8 - - - - - 6.116 1 l 24 - - - - - 6.116 32 - - - - - 6.116 40 - - - - - 6116 48 - - - - - 6.116 49 - - - - - 6.116 50 - - - - - 6116 51 - - - - - 6.116 52 - - - - - 6.116 53 - - - - - 6116 54 - - - - - 6116 56 - - - - - 6.116 Node Loads : 17 TRANS EQ Node FX FY FZ MX MY MZ (kip) (kip) (kip) (kip ft) (kip"ft) (kip ft) 5 0.045 - - - - - 6 0.045 - - - - - 13 0:045 - - - - _ 14 0 045 - - - - - 21 0.045 - - - - - 22 0.045 - - - - - 29 0.045 - - - - - 30 0.045 - - - - - 37 0.045 - - - - - 38 0.045 - - - - - 45 0.045 - - - - - 46 0.045 - - - - - I 1 Print Time/Date 15/05201514 31 STAAD.Pro V8i 20.07.05.15 Print Run 17 of 19 1 i :s9 JobPart No Sheet No Rev T.B.D. Result Software licensed to Job Title SOUTHOLD LANDFILL Ref By Date15-May-15 Chd Client File South Row.std Date/Time 15-May-2015 12 37 Node Loads : 18 LONG EQ Node FX FY FZ MX MY MZ (kip) (kip) (kip) (kip-ft) (kip ft) (kip-ft) 5 • - - 0 045 - - - 6 - - 0 045 - - - ' , 13 - - 0.045 - - - 14 - - 0 045 - - - 21 - - 0.045 - - - 22 - - 0.045 - - - 29 - - 0.045 - - - 30 - - 0 045 - - - 37 - - 0.045 - - - 38 - - 0.045 - - - 45 - - 0.045 - - - 46 - - 0.045 - - - Node Displacement Summary Node L/C X Y Z Resultant rX rY rZ (in) (in) (in) (in) (rad) (rad) (rad) Max X 17 57:GENERATE 0.073 -0 193 -0.000 0.207 0.000 0.000 0.010 Min X 10 76.GENERATE -0.046 0.111 -0.000 0.120 0.000 0.000 0.006 Max Y 10 76:GENERATE -0 046 0.111 -0.000 0.120 0 000 0.000 0.006 Min Y 17 57:GENERATE 0.073 -0.193 -0.000 0.207 0.000 0.000 0.010 Max Z 42 37:GENERATE 0.005 -0.014 0.009 0.017 0.000 -0.000 -0.001 ' Min Z 42 39:GENERATE 0.005 -0.014 -0.009 0.017 -0.000 0.000 -0.001 Max rX 10 37•GENERATE 0.010 -0 028 0.004 0.030 0.001 0 000 -0 001 Min rX 10 39:GENERATE 0.010 -0.028 -0.004 0.030 -0.001 -0.000 -0.001 Max rY 12 37:GENERATE -0.002 0.004 0.001 0 005 0 001 0.000 -0.000 Min rY 12 39:GENERATE -0.002 0.004 -0.001 0.005 -0.001 -0.000 -0.000 Max rZ 17 57-GENERATE 0.073 -0.193 -0.000 0.207 0.000 0 000 0.010 Min rZ 26 55:GENERATE 0 068 -0.176 -0.000 0.188 -0 000 -0.000 -0.009 Max Rst 17 57:GENERATE 0.073 -0.193 -0.000 0.207 0.000 0.000 0.010 Print Time/Date•15/05/201514.31 STAAD.Pro V8i 20.07.05.15 Print Run 18 of 19 _ Fejo;91 , Job No Sheet No Rev T.B.D. Result Software licensed to Part Job Title SOUTHOLD LANDFILL Ref By Date15-May-15 CM Client File South Row.std Daterrime 15-May-2015 12 37 Beam Force Detail Summary Sign convention as diagrams:-positive above line,negative below line except Fx where positive is compression.Distance d is given from beam end A. Axial Shear Torsion Bending Beam LIC d Fx Fy Fz Mx My Mz (ft) (kip) (kip) (kip) (kip-ft) (kip ft) (kip-ft) Max Fx 74 57:GENERATE 0 000 4.004 0.885 -0.000 -0.000 0.000 0.000 Min Fx 15 76:GENERATE 0 000 -1.981 -0.116 0.002 -0.000 -0.002 -0.396 Max Fy 20 57:GENERATE 0.000 0.285 2.000 0.000 -0 000 -0.000 3.809 Min Fy 17 25•GENERATE 0.000 -0 091 -2.078 -0 000 -0 000 0 000 -0.287 Max Fz 55 20:GENERATE 16.600 -0.000 -0.421 0.153 -0.000 0.000 0.000 Min Fz 33 20•GENERATE 0 000 -0.000 0.421 -0.153 0.000 0 000 0.000 Max Mx 10 39 GENERATE 0.000 0.001 -0.000 0.011 0.029 -0 016 -0.000 Min Mx 10 37:GENERATE 0.000 0.001 -0 000 -0.011 -0.029 0.016 -0.000 Max My 7 37 GENERATE 0 000 0.250 0 001 -0 102 0.000 0.100 0.002 Min My 55 20.GENERATE 8.300 -0 000 0.000 0.000 -0.000 -0.636 -1.748 Max Mz 17 57:GENERATE 1.949 -0.253 -2 065 -0.000 -0.000 -0.000 3.809 Min Mz 39 25:GENERATE 8 300 0.000 -0 002 -0.000 0 000 -0 188 -4.361 Reaction Summary Horizontal Vertical Horizontal Moment Node L/C FX FY FZ MX MY MZ (kip) (kip) (kip) (kip-ft) (kip ft) (kip ft) Max FX 53 22:GENERATE 1.321 -1.116 0.002 0.002 -0 000 -1 534 Min FX 51 77•GENERATE -1.355 2.012 -0 000 -0 000 0.000 1.573 Max FY 52 57:GENERATE -0.885 4.004 0.000 0 000 -0.000 1.027 Min FY 16 76:GENERATE 0.116 -1.981 0.002 0.002 -0.000 -0.396 Max FZ 8 39:GENERATE -0.001 0.280 0.102 0 100 -0.000 0002 Min FZ 8 37•GENERATE -0.001 0 250 -0.102 -0 100 0.000 0.002 Max MX 8 39:GENERATE -0 001 0.280 0.102 0.100 -0 000 0.002 Min MX 8 37.GENERATE -0.001 0.250 -0 102 -0.100 0.000 0.002 Max MY 53 39:GENERATE 0.001 0.532 -0.025 -0 029 0.000 -0 001 , Min MY 53 37 GENERATE 0.001 0.532 0.025 0.029 -0.000 -0.001 Max MZ 51 77:GENERATE -1.355 2.012 -0.000 -0.000 0 000 1.573 Min MZ 50 31 GENERATE 0.001 0.532 -0.000 -0.000 0.000 -7.076 Print Time/Date 15/05/201514 31 STAAD.Pro V8i 20.07.05.15 Print Run 19 of 19 POST-BEAM END'FORCES(SUMMARY). - Post 2 LOAD COMBO NODE Fx(kip) Fy(kip) Fz(kip) Mx(k-ft)x My(k-ft) Mz(k-ft) I j Max Fx 75 57 GENERATED IBC T 13 3.976 0.875 0 0 0 0 Min Fx 15 76 GENERATED IBC T 16 -1981 -0.116 0.002 0 -0.002 -0 396 Max Fy 75 77 GENERATED IBC T 13 2.005 1.349 0 0 _ 0 0 Min Fy 75 22 GENERATED IBC T 13 -1.116 -1.321 -0.002 0 0 0 Max Fz 75 39 GENERATED IBC T 13 0.532 -0 001 0.025 0 0 0 Min Fz 75 37 GENERATED IBC T 13 0 532 -0.001 -0.025 0 0 0 Max Mx 75 39 GENERATED IBC T 13 0.532 -0 001 0.025 0 0 0 Min Mx 75 37 GENERATED IBC T 13 0.532 -0.001 -0.025 0 0 0 Max My 75 39 GENERATED IBC T 53 0.532 -0 001 0.025 0 0.029 0.001 Min My 75 37 GENERATED IBC T 53 0 532 -0.001 -0.025 0 -0.029 0 001 Max Mz 78 35 GENERATED IBC T 56 0 308 0.615 0 0 0 1.786 Min Mz 15 89 GENERATED IBC T 56 0.095 0.614 0 0 0 -4 331 ' , -TOP CHORD-BEAM END;FORCES`(SUMMARY) `s TOP CHORD 2 LOAD COMBO NODE Fx(kip) Fy(kip) Fz(kip) Mx(k-ft) My(k-ft) Mz(k-ft) Max Fx 12 22 GENERATED IBC T 13 0.769 -0.7 0.001 0 -0.001 -1.395 Min Fx 11 23 GENERATED IBC T 12 -0.782 -1.426 0 0 0 -0.031 Max Fy 12 57 GENERATED IBC T 13 0.284 1.985 0 0 0 3.782 Min Fy 9 25 GENERATED IBC T 9 -0.091 -2.058 0 0 0 -0.283 Max Fz 11 37 GENERATED IBC T 12 -0.09 -0.25 0.035 -0 01 -0.02 0 Min Fz 11 39 GENERATED IBC T 12 -0.09 -0.25 -0.035 0.01 0.02 0 Max Mx 10 39 GENERATED IBC T 11 0.001 0 0 011 0.029 -0.016 0 Min Mx 10 37 GENERATED IBC 1 11 0.001 0 -0.011 -0.029 0.016 0 Max My 12 39 GENERATED IBC 1 13 0.092 0 25 -0.03 0.012 0.048 0 486 ' Min My 12 37 GENERATED IBC T 13 0 092 0 25 0.03 -0.012 -0.048 0.486 Max Mz 9 57 GENERATED IBC T1 13 -0.253 -2.05 0 0 0 3 782 Min Mz 11 76 GENERATED IBC T 14 0.623 1.001 0 001 0 0.001 -1.92 r (r JOB TITLE SOUTHOLD LANDFILL '• rel°/rt,F';4- rr°yf-®® s�9 ep►^4r� JOB NO.T.B.D SHEET NO. RBI SOLAR CALCULATED BY xxx DATE 5/15/2015 CHECKED BY DATE Purlin Design and Analysis Zone: Zone,2 Mechanical Properties F„=Yeild Strength 50 0 ksi E=Modulus of Elasticity 29000 0 ksi S2b-Bending Factor 1.67 f Comp Factor 1.8 C,"for simple beam 1 - R-for Simple Span 0.65 : - ' - " : 8"Z 16ga i 3f m4 - a F?t - s'__ , 2.;: D 8 4 ,;1 t ' :'1' B1 2.125 iheor rn ' s 1" r , k,'.,eiAter` . r,. I r<. -,' 4..��- "'..;x r,-=ti 1 ' B2 2.375 :�.__��°�,�< _ �'` :4 �-`� _ _!� t t 00625 '°` -.` f++v;'1q `4 ` f,' _ .r- -1 R 0.1875 . f "'')--..,:..0';:s::--;:z...-5_,4,4.7,,,p.`..4- ". _= § :,,p.=;:7.1 d 0 911 Solar Purlin Section Wt Ib/ft Area(in') S0P,e _ S"„aa I, V"(kips) M"(k.in) Pe(kips) 8"Z 16ga 2.796 0.822 1 766 1.778 7.495 2.336 58 156 6 432 Ls Span 16.6 ft Design Forces bb,=Tributary Width 3.28 ft Morax W`bi„'L2/8 49.95 kip.in wP Purlin wt. 0 85 psf Vmen=W*bp,•U2 1.00 kips wwi=Panels wt 2.80 psf R,„ V,„e,, 1.00 kips whe=Collateral Load 0.00 psf Flexural Stress,Check-Flexure about x-x WoL=E(wp+wpl+whg) 3.65 psf Flexure Check x-x PASS WL=Snow(Live)Load 11.48 psf Shear Check x-x PASS Ww Wind Load 32.72 psf 1 Ww Wind Load UPLIFT 17.33 psf Check Uplift Wind Deflection Check M1e%(Ww WoL)"ba L`/8 18.56 kip.in Fact 5/384*(WDL+WL)•bw•L°/(E*Ix) 0.95 in Mn=R*Se„ea'FY 57.79 kip.in 1 Sall L/120 1.66 in Mail=Mhi 2b 34.60 kip.in OK OK DL+WL+LL Combination P"x x2*E'Ix/(KL)2 I 54.11 k I ax 1-(S2s'P/Pex) 1 Eq.6.53 Ci=P/Pe+C,„.M/(a, Me) 0 858812 Eq 6.54. 'C2=P/P+M/(Me) 0 858812 Eq.6 54 if(P/Pa<=0.15,C2,C1) 0.858812 OK Max.Stress Ratio= I 0.858812 I STEEL BEAM AND COLUMN ANALYSIS/CODE CHECK Stress Code Check Per AISC 13th Edition Manual(ASD) For W,S,M,and HP Shapes Project Name: SOUTHOLD LANDFILL Client SunEdison Project No.: T.B.D. ' Prep By xxx I Date: - 5/15/2015 Input Data: Post 2 Member Size: Member Properties:_ Y Select: W6x8.5 A= 2 52 in^2 j d= 5 830 in I 4. tf=0 195 Member Loadin s: tw= 0.170 in - P0 10 kips bf= 3 940 in ___._ Mx= 4.33 -ft-kips tf= 0 195 In My= 0.00 ft-kips k= 0 445in. d=5 83 - -•-•- - -X _ Ix= 14.90 1n^4 Design Parameters: Sx= 5.10 In^3 ) I( tw=017 _ Fy= 50.00 ksi rx= 2.43 in - Kx= 1.20_ Zx= 5.73 In^3 I bf=3 94 _ Ky= 1.20_ ly= 1.99 in m ry Lx= 3.410 ft Sy=--- 1.01 In^3 W6x8.5 Section Ly 3.410 ft ry= 0 89—in Lb= 3.410 _ft Zy= 1 56 _ in^3 Sha a Factors: j Flex.Type= Single J= 0.033 in^4 SFx= 1.12 Cb= 1 67 Cw= 15.8 in^6 SFy= 1.54 Results: For Axial Compression: For X-axis Bendinq:_ For Y-axis Bending: L Kx' x/rx= 20.21` Lp= 3_14 ft fby= 0.00 ksi Ky*Ly/ry= 55.17 Lr= 9 47 ft Fby= 44 63 ksi Fe= _ 94.03 rts= 1.05 Mry= 3 76 ft-kips fa=_ 0.04 ksi fbx= 10 19 ksi Fa= 23.97 _ksi Fbx= 32 83 ksi Pa= _ 60.39 kips Mrx= 13 95 ft-kips Nodal Lat.Brcq Requirements: Nodal Lat.Brcq Requirements: Pbr=I 0.00 kips Pbr=� 0 18 kips pbr= 0.04 kip/In pbr= 4 51 kip I in I 1 i , Stress Ratio: - . S R = 0 311 Eqn.H1-lb < S.R s 1,Member is adequate for loading - Comments: 1 5/15/2015 Z\Engineering Projects\RBI Solar\SOUTHOLD,NY\ Page 2 2 30 PM Engineering Request-SunEdison-Southold LANDFILL NY-2015-5-14(20 degrees) of 5 ' Top Chord,Design-Compression,Member . •Input Data - - . - , TOP CHORD 2, • - Member Section 4x4x14ga A=Tube Width 4 in Yl B= Tube Length 4 in i#. R=Corner Inner Radius 0.09375 in t=Thickness 0 083 in % . KLx=Buckling around x-x 1.95 ft . X. + 4•--_.—_--x b B ter.���.�_ KLy=Buckling around y-y 3.9 ft I E=Modulus of Elasticity 29500 ksi Fy=Yield Stress 50 ksi c ) , G=Shear Modulus 11300 ksi I. Yj 0 . - Calculated Parameter ' - ' • -), -, Atplied Forces. _ - 1-Properties of 90°corner M 3.782 kip.ft r=R+t/2, Centerline of Dimension 0.135 _ in P 0.00001 kips u=n.r/2,Arc Length 0.212 in , c=0.637.r Distance of c.g.from center 0.086 in 2-Flat widths of flanges and webs Flat width of Dim.a=A-(2 r+t) 3 6465 in Flat width of Dim.b=B-(2.r+t) 3.6465 in . -. ', - Calculation of'IX, . ' .' . , , ' . " : Element L, Length(in) Y, Distance to the center(in) L xY2 IX Flanges 2.a 7.293 B/2-t/2 1.959 27.974 0.000 Web 2.b 7.293 0 0.000 0.000 8 081 Corners 4.0 0.850 b/2+c 1.909 3.098 0.000 Sum , 15.436 3.868 31.072 8.081 • . CalculationofI - - Element L, Length(in) X, Distance to the center(in) L x X2 I ' Flanges 2 a 7 293 0 0.000 0.000 8 081 Web 2.b 7.293 A/2-t12 1.959 27 974 0 000 Corners 4.0 0.850 a/2+c 1.909 3.098 0.000 Sum 15 436 3 868 31.072 8.081 - " - - - Section Properties - ' A L x t 1.2812 in` Ix tx(LxY2+IX) 3.2497 in9 ly t x(L x X2+1;) 3.2497 in4 Sx lx/(B/2) 1.6249 in' Sy ly/(A/2) 1.6249 in' rx (Ix/A)°5 1.5927 in ry (ly/A)°5 1.5927 in 1 1 ' 1 ' Nominal'Buckling Stress.. _ - • - ' ' , KLJrx 14.69 KLy/ry 29.38 KL/r 29.38 _ Fe n2.E/(KL/r)2 337 19 ksi kn (Fy/Fe)°b 0.39 1 Fn 46.99 ksi - Effective,Area,, - effective width of compression flange wit=alt 43.93 - A 1.052/(k)°5 x(w/t)x(Fr,/E)°5 0.92 p (1-0.22/A)/X. 0.83 ae 3.01 in effective width of web element w/t=b/t 43.93 a. 1.052/(k)°5 x(w/t)x(FJE)°5 0.92 p (1-0.22/1,)/?, 0.83 be 3.01 in - - Allowable Axial Load _ • - Ae Ae=A-2 x t x((a-ae)+(b-be)] 1.07 in2 Pn Pn Ae x Fn 50.28 kips nn 1.80 Pa=Pn/mac 27.93 kips .� , - ,." ,Check CompressionStresses _ - °• " Loads from Wind? Cbl - Cb1=(P/Pa) 0.00 NO Allowable Stress Unity I 1 0.00 Section is OK Computing of'Mn; ,, By using the effective width of compression flange and assuming the web is fully effective,the neutral axis can be located as follow: Element L, Length(in) y, Distance to top fiber(in) L.y L.y2 C Flanges ae 3.011 t/2 0.042 0.125 0.005 Web 2.b 7.293 B/2 2.000 14 586 29.172 C. Corners 2.0 0.425 c+t/2 0.128 0.054 0.007 T. Flanges ae 3.011 B4/2 3.959 11.917 47 175 T.Corners 2.0 0.425 B-c-t/2 3.872 1.645 6.372 Sum 14.164 10.000 28.328 82.731 ycg=L.y/L 2.000 Z=R+t 0.177 in The max.stress of 50 ksi ocurs in the compression flange as assumed in the calculation - - ." ' Check,the effectiveness of the Web: •' . ' ' • - fi (Ycg-Z)Fy/Ycg 45 58 ksi f2 -(B-Ycg-Z)Fy/Ycg -45.58 ksi W f2/f1 -1.00 k • 4+2(1-1,)3+2(1-w) 24 00 h/t bjt 43.93 X 1.0521(k)°5 x(h/t)x(fi/E)°5 0.37 p (1-0.22/X)/A, 110 be 3.65 in 1 b+ be/(3-W) 0.91 in b2 1.82 in b1+b2 2.73 in 2 fweb I 2(1112)(b)3 8.08 in4 I(Ly2) 82.73 in4 (-)(El)(Ycg)2 56.66 in4 I'X 34.16 in4 IX I'xt 2.83 in4 Sex Ix/Ycg 1 42 in3 Cb=1.0 for combined axial load and bending moment j 2b2d2t/(b+d) 4.02 in4 Sr fullSx 1.62 in4 Lu 0.36Cbn.(E I.G.j)05/(F. Sr) 76.60 ft Fe Cbn.(E I.G.j)05/(L.Sf) 5455.60 ksi _ Allowable;•Bending,Moment -- - " • _ Mnx 5.906 kip.ft ob 1 670 - Ma=Mnx Alb 3.537 kip ft - Check Stresses, . - „ - : , " Cmx 0.6-0 4*Mi/M2 0 60 Loads from Wind? Cbl (P/Pa)+(Cmx Mx/Ma) 0.64 NO Cb2 (P/Pa)+(Mx/Ma) 1.07 Allowable Stress Unity I 1 Cb If((P/Pa)<=0.15,Cb2,Cbl) 1 07 Section is NG and try another section t _ Job No Sheet No Rev T.B.D. Reaction A Part Software licensed to Job Title SOUTHOLD LANDFILL Ref By Date15-May-15 Chd Client File South Row.std Date/Tune 15-May-2015 12.37 Reaction Summary Horizontal Vertical Horizontal Moment Node UC FX FY FZ MX MY MZ (kip) (kip) (kip) (kip-ft) (kip-ft) (kip-ft) Max FX 53 22:GENERATE 1.321 -1.116 0.002 0.002 -0.000 -1 534 Min FX 53 77:GENERATE -1.349 2.005 -0.000 -0 000 0.000 1.567 Max FY 53 57:GENERATE -0.875 3.976 -0.000 -0.000 0.000 1.016 Min FY 16 76.GENERATE 0.116 -1.981 0.002 0.002 -0.000 -0.396 Max FZ 53 37:GENERATE 0.001 0.532 0.025 0.029 -0.000 -0.001 Min FZ 53 39.GENERATE 0.001 0.532 -0.025 -0.029 0 000 -0 001 Max MX 53 37•GENERATE 0 001 0.532 0.025 0.029 -0.000 -0.001 Min MX 53 39:GENERATE 0.001 0.532 -0.025 -0.029 0.000 -0.001 Max MY 53 39:GENERATE 0.001 0 532 -0.025 -0.029 0.000 -0.001 Min MY 53 37:GENERATE 0 001 0 532 0 025 0.029 -0.000 -0.001 Max MZ 53 77:GENERATE -1.349 2.005 -0.000 -0.000 0.000 1.567 Min MZ 53 31:GENERATE 0.001 0.532 0.000 0.000 -0.000 -7.076 1 Print Time/Date•15/05/2015 14.32 STAAD.Pro V8i 20.07.05.15 Pnnt Run 1 of 1 Project Name: SOUTHOLD LANDFILL Project No: T.B.D. Wind Zone: South Rows Design Criteria: Code: IBC 2009 Chord Length= 13.13 ft Dead Load: 5.0 psf Roof Live Load: 0.0 psf Ground Snow: 20.0 psf Wind Speed: 120 mph (Exposure C Assumed) Module Tilt: 20.0 deg Purlin Spacing: 3.28 ft Snow Load Calculation:pf=0.7CsCeCtlspg Ce= 1.0 Ct= 1.2 = _ 0.8 Cs= 0.91 P5 11.5 psf Wind Load Calculation:q=0.00256KZKdKZtV2 Iw KZ= 100 Mean Roof Height= 33.0 ft(Per CPP Wind Tunnel Analysis) Kd= 0 85 KZt= 1.0 Iw= 0.77 q= 24.2 psf STAAD Model Input(Z-Puclin Loading:)` Dead Load: 0.016 klf Roof Live: 0.000 klf Snow Load: 0.038 klf Wind: Balanced Wind(Applied to all purlins): Zone 1. Wind Uplift -0.077 klf -0.057 klf -0.057 klf -0.053 klf -0.053 klf Wind Down 0.066 klf 0.064 klf 0.065 klf 0.065 klf 0.065 klf Wind: Unbalanced Wind(Applied to lower half of purlins ONLY): Zone V -1 , 2 3 _4 S Wind Down -0.112 klf -0.107 klf -0.111 klf -0.110 klf -0.109 klf Wind Uplift 0.026 klf 0.023 klf 0.028 klf 0.026 klf 0.026 klf Base Moment: -14.150 k-ft -13.785 k-ft -12.780 k-ft -12.507 k-ft -12.233 k-ft (Downward) Base Moment: 1.643 k-ft 1.369 k-ft 1.278 k-ft 1.278 k-ft 1.461 k-ft (Uplift) NOTE THE DIRECTION OF LOAD I I 1 20.0 Degree,Tilt Zone: 1 2 3 4 5 ' Zone Width 0.00 ft 13.13 ft 26.27 ft 39.40 ft 52.54 ft -- - _Roof Pressure Coefficients,(Wind�TunneliTea Fesults); Zone: 1 2 3 4 5 GC„ Uplift -0.97 -0.72 -0.72 -0.67 -0.67 ' Roof Pressures(p,=q6C„(psf)): Zone: 1 2 3 4 5 Uplift -23.37 -17.33 -17 33 -16.12 -16.12 Downward 20.15 19.34 19 74 19 74 19.74 Base of Post Coefficients(Wind Tunnel Test;Resul'ts);: Zone: 1 2 3 4 5 GCry Negative -0.26 -0.25 -0.23 -0.23 -0.22 Positive 0.03 0.03 0.02 0.02 0.03 Base of Post Moments(My=GCmr4q"Aref*treff,:. Zone: 1 2 3 4 5 Negative(Downward) -14.15 k-ft -13.78 k-ft -12.78 k-ft -12.51 k-ft -12.23 k-ft Positive(Uplift) 0.13 k-ft 0.10 k-ft 0.10 k-ft 0.10 k-ft 0.11 k-ft i , Lower Purlin,Coefficients(Witid,Tunnel,Residts)':, Zone: 1 2 3 4 5 4*GC„,„Y Negative -1.41 -1.35 -140 -1.39 -1.37 Positive 0.33 0 29 0.35 0.33 0.33 Lower Purlin,Pressures(p=q*GCM4'4f(paf)' Zone: 1 2 3 4 5 ' Negative(Downward) -34 17 -32.72 -33.85 -33.52 -33.20 Positive(Uplift) 7 90 6 93 8 38 8 06 8 06 II • l Job No Sheet No Rev T.B.U. SK-1 Software licensed to Part Job Title SOUTHOLD LANDFILL Ref By Data15.May-15 Chd Client File South row 13 3 std Datemme 15-May-2015 15 42 6 \ \ \ ,.- / `)1 •---s..,,,,_\\\ �A5 \\ Ib� \ 4 \ 'o1a 'oia \ 'b . "\. \ \ 018\ \`\ \ 22/ N \ ` ©� \\ h1� . \ o ,- \1 2e1\ \`\ \` s 3\ .\ o \gy0384a7, \ \ „, 042 \ ,043'' ,' b5 b41 544 I SK-1 1 Pent l lme/Date 151051201515 44 STAAD Pro V8120 07 05 15 Print Run 1 of 1 _ 4%4 Job No Sheet No Rev T.B.D. SK-2 Software licensed to Part ' ' Jehnue SOUTHOLD LANDFILL Ref By Data15-May-15 Chd Client File South row 13 3 std Detemme 15-May-2015 15 42 1 .b./ ^�� \ \\ e \ \ ,\v\ v • \v\ b N t'\ �a 80ft \\\ ',30ft .,,'267fte:. \ \ Oft\ \� N \., N \ °` N \ ° \ ,3r 41ft \ -\ \ `0 /6 N`\ /' \ ® \\ \0 le \ \\° \\ �DFt A \ 6 \ \ l 30ft \)vj i SK-2 f i_ Print Tine/Date 15105/2015 15 45 STAAD Pro V8120 07 05 15 Print Run 1 of 1 I i -"'"41 Job No Sheet No Rev T.B.D. Result ., 1 Part Software licensed to Job Title SOUTHOLD LANDFILL Ref By Dalai 5-May-15 Chd Client File South row 13 3 std' Date/time 15-May-2015 15:42 Nodes H Node X Y Z ' (ft) (ft) (ft) 1 0.000 0.612 0 000 2 9.834 4.191 0.000_ 3 3 663 1 945 0.000 4 6 171 2 858 0.000 5 1.831 1.279 0 000 6 8.002 3.525 0.000 . 8 8.002 0.118 0.000 9 0.000 0 612 13.300 10 9 834 4.191 13.300. 11 3.663 1.945 13.300 12 6.171 2.858 13 300 13 1 831 1.279 13.300 14 8.002 3.525 13.300 16 8 002 0.118 13 300 17 0.000 0.612 26.600 18 9.834 4.191 26.600 19 3.663 1 945 26 600 20 6.171 2.858 26.600 21 1.831 1.279 26.600 . 22 8.002 3 525 26.600 24 8.002 0.118 26.600 25 0 000 0.612 39.900 26 9.834 4 191 39.900 27 3 663 1.945 39.900 28 6.171 2.858 39.900 29 1.831 1.279 39.900 30 8.002 3 525 39 900 32 8 002 0 118 39 900 33 0 000 0.612 53 200 34 9.834 4 191 53.200 l 35 3 663 1.945 53 200 36 6.171 2.858 . 53.200 37 1.831 1.279 53 200 38 8.002 3.525 53.200 40 8 002 0.118 53.200 41 0.000 0.612 66.500 42 9 834 4.191 66.500 , 43 3.663 1.945 66.500 44 6.171 2.858 66 500 45 1.831 1 279 66 500 46 8 002 3.525 66.500 48 8.002 0.118 66.500 49 ,1.831 0 118 0 000 50 1.831 0 118 13 300 51 1.831 0 118 26.600 Pnnt Time/Date 15/05/201515 43 STAAD Pro V8i 20.07.05 15 Print Run 1 of 19 Job No Sheet No Rev T.B.D. Result ' 411 ::Software licensed to Part Job Title SOUTHOLD LANDFILL Ref By Date15-May-15 Chd Client File South row 13.3 std Daterrime 15-May-2015 15:42 Nodes Cont... Node X Y Z 1 ! (ft) (ft) (ft) 52 1831 0118 39.900 53 1.831 0.118 53.200 54 1 831 0.118 66.500 55 8.002 0 618 0.000 56 8.002 0 618 13 300 Beams Beam Node A Node B Length Property ft (ft) (degrees) 1 1 5 1.949 3 0 2 3 4 2.669 3 0 3 4 6 1949 3 0 4 5 3 1949 3 0 5 6 2 1.949 3 0 7 8 55 0.500 '1 0 9 9 13 1.949 3 0 10 11 12 2.669 3 0 11 12 14 1.949 3 0 12 13 11 1949 3 0 13 14 10 1 949 3 0 15 16 56 0.500 1 0 17 17 21 1 949 3 0 18 19 20 2 669 3 0 19 20 22 1.949 3 0 20 21 19 1.949 3 0 21 22 18 1 949 3 0 23 24 22 3.407 1 0 25 25 29 , 1.949 3 0 26 27 28 2.669 3 0 27 28 30 1.949 3 0 28 29 27 1.949 3 0 29 30 26 1 949 3 0 31 32 30 3.407 1 0 33 2 10 13 300 5 20 34 10 18 13.300 5 20 35 18 26 13.300 5 20 36 4 12 13 300 5 20 37 12 20 13.300 5 20 38 20 28 13 300 5 20 39 3 11 13.300 5 20 40 11 19 13 300 5 20 41 19 27 13 300 5 20 42 1 9 13.300 5 20 Print Time/Date 15/05/201515 43 STAAD.Pro V8i 20.07 05 15 Print Run 2 of 19 _ Job No Sheet No® Rev ' . Result esult uiEliPart Software licensed to Job Tele SOUTHOLD LANDFILL Ref By Date15-May-15 Chd Client File South row 13.3 std Date/Time 15-May-2015 15.42 Beams Cont®.. Beam Node A Node B Length Property f3 (ft) (degrees) 43 9 17 13.300 5 20 44 17 25 13.300 5 20 47 33 37 1.949 3 0 48 35 36 2 669 3 0 49 36 38 1 949 3 0 50 37 35 1 949 3 0 51 38 34 1.949 3 0 53 40 38 3 407 1 0 55 26 34 13 300 5 20 56 28 36 13.300 5 20 57 27 35 13 300 5 20 58 25 33 13 300 5 20 59 41 45 1 949 3 0 60 43 44 2.669 3 0 61 44 46 1 949 3 0 62 45 43 1.949 3 0 63 46 42 1 949 3 0 65 48 46 3.407 1 0 67 34 42 13.300 5 20 68 36 44 13.300 5 20 69 35 43 13.300 5 20 70 33 41 13 300 5 20 71 49 5 1 161 1 0 72 50 13 1.161 1 0 73 51 21 1161 1 0 74 52 29 1.161 1 0 75 53 37 1.161 1 0 76 54 45 1 161 1 0 , 77 55 6 2.907 1 0 78 56 14 2.907 1 0 79 6 56 13 614 4 0 80 14 55 13 614 4 0 Print Time/Date 15/05/201515 43 STAAD Pro V8i 20.07.05 15 Print Run 3 of 19 Job No Sheet No Rev T.B.D. Result 40, - Software licensed to Part Job Title SOUTHOLD LANDFILL Ref By Date15-May-15 Chd Client File South row 13 3.std Date/Time 15-May-2015 15:42 Basic Load Cases Number Name 1 DEAD LOAD 2 SNOW LOAD 3 UPLIFT 4 DOWN 5 UNBALANCED UPLIFT 6 UNBALANCED DOWN 7 BASE POS MOMENT-ZONE 1 8 BASE POS MOMENT-ZONE 2 9 BASE POS MOMENT-ZONE 3 10 BASE POS MOMENT-ZONE 4 11 BASE POS MOMENT-ZONE 5 12 BASE NEG MOMENT-ZONE 1 13 BASE NEG MOMENT-ZONE 2 14 BASE NEG MOMENT-ZONE 3 15 BASE NEG MOMENT-ZONE'4 16 BASE NEG MOMENT-ZONE 5 17 TRANS EQ 18 LONG EQ Combination Load Cases Comb. Combination L/C Name Primary Primary L/C Name Factor 19 GENERATED IBC TABLE7ASD241 1 1 DEAD LOAD 1 00 20 GENERATED IBC TABLE7ASD241 2 1 DEAD LOAD 1 00 2 SNOW LOAD 1 00 21 GENERATED IBC TABLE7ASD241 3 1 DEAD LOAD 1.00 2 SNOW LOAD 0.75 22 GENERATED IBC TABLE7ASD241 4 1 DEAD LOAD 1.00 3 UPLIFT 100 23 GENERATED IBC TABLE7ASD241 5 1 DEAD LOAD 1.00 4 DOWN 1.00 24 GENERATED IBC TABLE7ASD241 6 1 DEAD LOAD 1.00 5 UNBALANCED UPLIFT 1 00 25 GENERATED IBC TABLE7ASD241 7 1 DEAD LOAD 1 00 6 UNBALANCED DOWN 1.00 26 GENERATED IBC TABLE7ASD241 8 1 DEAD LOAD 1.00 7 BASE POS MOMENT-ZONE 1 1.00 27 GENERATED IBC TABLE7ASD241 9 1 DEAD LOAD 1.00 8 BASE POS MOMENT-ZONE 2 1.00 28 GENERATED IBC TABLE7ASD241 10 1 DEAD LOAD 1 00 9 BASE POS MOMENT-ZONE 3 1.00 29 GENERATED IBC TABLE7ASD241 11 1 DEAD LOAD 1.00 10 BASE POS MOMENT-ZONE 4 1 00 Print Time/Date 15/05/201515 43 STAAD Pro V8120 07 05 15 Print Run 4 of 19 - Job No Sheet No Rev T.B.D. Result Software licensed to Part - Job Title SOUTHOLD LANDFILL Ref By Date15-May-15 Chd Client File South row 13 3 std Date/time 15-May-2015 15.42 Combination Load Cases Cont... Comb. Combination L/C Name Primary Primary LIC Name Factor 30 GENERATED IBC TABLE7ASD241 12 1 DEAD LOAD 1.00 11 BASE POS MOMENT-ZONE 5 1 00 31 GENERATED IBC TABLE7ASD241 13 1 DEAD LOAD 1 00 12 BASE NEG MOMENT-ZONE 1 1.00 32 GENERATED IBC TABLE7ASD241 14 1 DEAD LOAD 1.00 13 BASE NEG MOMENT-ZONE 2 1.00 33 GENERATED IBC TABLE7ASD241 15 1 DEAD LOAD 1.00 14 BASE NEG MOMENT-ZONE 3 1.00 34 GENERATED IBC TABLE7ASD241 16 1 DEAD LOAD 1.00 15 BASE NEG MOMENT-ZONE 4 1.00 35 GENERATED IBC TABLE7ASD241 17 1 DEAD LOAD 1.00 16 BASE NEG MOMENT-ZONE 5 1 00 36 GENERATED IBC TABLE7ASD241 18 1 DEAD LOAD 1.00 17 TRANS EQ 0.70 37 GENERATED IBC TABLE7ASD241 19 1 DEAD LOAD 1.00 18 LONG EQ -0 70 38 GENERATED IBC TABLE7ASD241 20 1 DEAD LOAD 1 00 17 TRANS EQ -0.70 39 GENERATED IBC TABLE7ASD241 21 1 DEAD LOAD 1.00 18 LONG EQ -0.70 40 GENERATED IBC TABLE7ASD241 22 1 DEAD LOAD 1.00 3 UPLIFT 0.75 41 GENERATED IBC TABLE7ASD241 23 1 DEAD LOAD 1.00 4 DOWN 0 75 42 GENERATED IBC TABLE7ASD241 24 1 DEAD LOAD 1.00 5 UNBALANCED UPLIFT 0 75 43 GENERATED IBC TABLE7ASD241 25 1 DEAD LOAD 1.00 6 UNBALANCED DOWN 0 75 44 GENERATED IBC TABLE7ASD241 26 1 DEAD LOAD 1 00 7 BASE POS MOMENT-ZONE 1 0.75 45 GENERATED IBC TABLE7ASD241 27 1 DEAD LOAD 1.00 8 BASE POS MOMENT-ZONE 2 0 75 46 GENERATED IBC TABLE7ASD241 28 1 DEAD LOAD 1.00 9 BASE POS MOMENT-ZONE 3 0.75- 47 GENERATED IBC TABLE7ASD241 29 1 DEAD LOAD 1 00 10 BASE POS MOMENT-ZONE 4 0 75 48 GENERATED IBC TABLE7ASD241 30 1 DEAD LOAD 1.00 11 BASE POS MOMENT-ZONE 5 0.75 49 GENERATED IBC TABLE7ASD241 31 1 DEAD LOAD 1 00 12 BASE NEG MOMENT-ZONE 1 0 75 50 GENERATED IBC TABLE7ASD241 32 1 DEAD LOAD 1 00 13 BASE NEG MOMENT-ZONE 2 0.75 51 GENERATED IBC TABLE7ASD241 33 1 DEAD LOAD 1 00 14 BASE NEG MOMENT-ZONE 3 0.75 52 GENERATED IBC TABLE7ASD241 34 1 DEAD LOAD 1 00 Pnnt Time/Date 15/05/201515 43 STAAD.Pro V8i 20.07.05 15 Pnnt Run 5 of 19 Job No Sheet No Rev T.B.D. Result Part Software licensed to Job Title SOUTHOLD LANDFILL Ref By Date15-May-15 Chd Client File South row 13 3 std Date/time 15-May-2015 15.42 Combination Load Cases Cont... Comb. Combination L/C Name Primary Primary L/C Name Factor 15 BASE NEG MOMENT-ZONE 4 0.75 53 GENERATED IBC TABLE7ASD241 35 1 DEAD LOAD 1 00 16 BASE NEG MOMENT-ZONE 5 0.75 54 GENERATED IBC TABLE7ASD241 36 1 DEAD LOAD 1 00 3 UPLIFT 0.75 2 SNOW LOAD 0.75 55 GENERATED IBC TABLE7ASD241 37 1 DEAD LOAD 1.00 4 DOWN 0.75 2 SNOW LOAD 0.75 56 GENERATED IBC TABLE7ASD241 38 1 DEAD LOAD 1.00 5 UNBALANCED UPLIFT 0.75 2 SNOW LOAD 0.75 57 GENERATED IBC TABLE7ASD241 39 1 DEAD LOAD 1.00 6 UNBALANCED DOWN 0.75 2 SNOW LOAD 0.75 58 GENERATED IBC TABLE7ASD241 40 1 DEAD LOAD 1.00 7 BASE POS MOMENT-ZONE 1 0.75 2 SNOW LOAD 0.75 59 GENERATED IBC TABLE7ASD241 41 1 DEAD LOAD 1.00 8 BASE POS MOMENT-ZONE 2 0.75 2 SNOW LOAD 0.75 60 GENERATED IBC TABLE7ASD241 42 1 DEAD LOAD 1.00 9 BASE POS MOMENT-ZONE 3 0.75 2 SNOW LOAD 0.75 61 GENERATED IBC TABLE7ASD241 43 1 DEAD LOAD 1.00 10 BASE POS MOMENT-ZONE 4 0 75 2 SNOW LOAD 0.75 62 GENERATED IBC TABLE7ASD241 44 1 DEAD LOAD 1.00 11 BASE POS MOMENT-ZONE 5 0 75 2 SNOW LOAD 0.75 63 GENERATED IBC TABLE7ASD241 45 1 DEAD LOAD 1.00 12 BASE NEG MOMENT-ZONE 1 0.75 2 SNOW LOAD 0.75 64 GENERATED IBC TABLE7ASD241 46 1 DEAD LOAD 1.00 13 BASE NEG MOMENT-ZONE 2 0.75 2 SNOW LOAD 0.75 65 GENERATED IBC TABLE7ASD241 47 1 DEAD LOAD 1.00 14 BASE NEG MOMENT-ZONE 3 0.75 2 SNOW LOAD 0.75 66 GENERATED IBC TABLE7ASD241 48 1 DEAD LOAD 1.00 15 BASE NEG MOMENT-ZONE 4 0 75 2 SNOW LOAD 0.75 67 GENERATED IBC TABLE7ASD241 49 1 DEAD LOAD 1.00 16 BASE NEG MOMENT-ZONE 5 0.75 2 SNOW LOAD 0 75 Pnnt Time/Date 15/05/201515 43 STAAD.Pro V8120.07 05.15 Print Run 6 of 19 F210'N Job No Sheet No Rev T.B.D. Result Software licensed to Part 411.11PJob Title SOUTHOLD LANDFILL Ref By Date15-May-15 Chd Client File South row 13 3.std Date/Time 15-May-2015 15.42 Combination Load Cases Cont... Comb. Combination UC Name Primary Primary UC Name Factor 68 GENERATED IBC TABLE7ASD241 50 1 DEAD LOAD 1.00 17 TRANS EQ 0 52 69 GENERATED IBC TABLE7ASD241 51 1 DEAD LOAD 1.00 18 LONG EQ 0 52 70 GENERATED IBC TABLE7ASD241 52 1 DEAD LOAD 1.00 17 TRANS EQ 0.52 2 SNOW LOAD 0.75 71 GENERATED IBC TABLE7ASD241 53 1 DEAD LOAD 1 00 18 LONG EQ 0.52 2 SNOW LOAD 0.75 72 GENERATED IBC TABLE7ASD241 54 1 DEAD LOAD 1.00 17 TRANS EQ -0 52 73 GENERATED IBC TABLE7ASD241 55 1 DEAD LOAD 1.00 18 LONG EQ -0.52 74 GENERATED IBC TABLE7ASD241 56 1 DEAD LOAD 1.00 17 TRANS EQ -0.52 2 SNOW LOAD 0.75 75 GENERATED IBC TABLE7ASD241 57 1 DEAD LOAD 1.00 18 LONG EQ -0 52 2 SNOW LOAD 0.75 76 GENERATED IBC TABLE7ASD241 58 1 DEAD LOAD 0.60 3 UPLIFT 1.00 77 GENERATED IBC TABLE7ASD241 59 1 DEAD LOAD 0.60 4 DOWN 1.00 78 GENERATED IBC TABLE7ASD241 60 1 DEAD LOAD 0 60 5 UNBALANCED UPLIFT 1.00 79 GENERATED IBC TABLE7ASD241 61 1 DEAD LOAD 0.60 6 UNBALANCED DOWN 1.00 80 GENERATED IBC TABLE7ASD241 62 1 DEAD LOAD 0.60 7 BASE POS MOMENT-ZONE 1 1.00 81 GENERATED IBC TABLE7ASD241 63 1 DEAD LOAD 0.60 8 BASE POS MOMENT-ZONE 2 1.00 82 GENERATED IBC TABLE7ASD241 64 1 DEAD LOAD 0.60 9 BASE POS MOMENT-ZONE 3 1.00 83 GENERATED IBC TABLE7ASD241 65 1 DEAD LOAD 0.60 10 BASE POS MOMENT=ZONE 4 1.00 84 GENERATED IBC TABLE7ASD241 66 1 DEAD LOAD 0.60 11 BASE POS MOMENT-ZONE 5 1.00 85 GENERATED IBC TABLE7ASD241 67 1 DEAD LOAD 0.60 12 BASE NEG MOMENT-ZONE 1 1.00 86 GENERATED IBC TABLE7ASD241 68 1 DEAD LOAD 0 60 13 BASE NEG MOMENT-ZONE 2 1.00 87 GENERATED IBC TABLE7ASD241 69 1 DEAD LOAD 0.60 14 BASE NEG MOMENT-ZONE 3 1.00 88 GENERATED IBC TABLE7ASD241 70 1 DEAD LOAD 0.60 Print Time/Date.15/05/201515 43 STAAD Pro V8I 20 07.05 15 Print Run 7 of 19 Job No Sheet No Rev T.B.D. Result Part Software licensed to Job Title SOUTHOLD LANDFILL Ref By Date1 5-May-15 Chd Client File South row 13.3 std Date/time 15-May-2015 15 42 Combination Load Cases Cont... Comb. Combination LIC Name Primary Primary LIC Name Factor 15 BASE NEG MOMENT-ZONE 4 1.00 89 GENERATED IBC TABLE7ASD241 71 1 DEAD LOAD 0.60 16 BASE NEG MOMENT-ZONE 5 1.00 90 GENERATED IBC TABLE7ASD241 72 1 DEAD LOAD 0.60 17 TRANS EQ 0 70 91 GENERATED IBC TABLE7ASD241 73 1 DEAD LOAD 0.60 18 LONG EQ 0.70 92 GENERATED IBC TABLE7ASD241 74 1 DEAD LOAD 0.60 - 17 TRANS EQ -0.70 93 GENERATED IBC TABLE7ASD241 75 1 DEAD LOAD 0.60 18 LONG EQ -0.70 Beam Loads : 1 DEAD LOAD Beam Type Direction Fa Da Fb Db Ecc. (ft) (ft) 33 UNI Ibf/ft GY -16.000 - - - - 34 UNI Ibf/ft GY -16.000 - - - - 35 UNI Ibf/ft GY -16 000 - - - - 36 UNI Ibf/ft GY -16.000 - - - - 37 UNI Ibf/ft GY -16 000 - - - - 38 UNI Ibf/ft GY -16 000 - - - - 39 UNI Ibf/ft GY -16.000 - - - - 40 UNI Ibf/ft GY -16.000 - - - - 41 UNI Ibf/ft GY -16 000 - - - - 42 UNI Ibf/ft GY -16.000 - - - - 43 UNI Ibf/ft GY -16.000 - - - - 44 UNI Ibf/ft GY -16 000 - - - - 55 UNI Ibf/ft GY -16.000 - - - - 56 UNI Ibf/ft GY -16 000 - - - - 57 UNI Ibf/ft GY -16 000 - - - - _ 58 UNI Ibf/ft GY -16 000 - - - - 67 UNI Ibf/ft GY -16.000 - - - - 68 UNI Ibf/ft GY -16.000 - - - - 69 UNI Ibf/ft GY -16.000 - - - - 70 UNI Ibf/ft GY -16.000 - - - - Print Time/Date 15/05/201515 43 STAAD Pro V8120.07.05.15 Print Run 8 of 19 I Job No Sheet No Rev T.B.D. Result i ; 41110 iPart ....-._ -, -"i Software licensed to Job Title SOUTHOLD LANDFILL Ref - By Date15-May-15 Chd Client File South row 13.3.std Date/time 15-May-2015 15 42 Beam Loads : 2 SNOW LOAD Beam Type Direction Fa Da Fb Db Ecc. I- 1 (ft) (ft) 33 UNI Ibf/ft GY -38.000 - - - - 34 UN! Ibf/ft GY -38.000 - - - - 35 UNI Ibf/ft GY -38 000 - - - - 36 UNI Ibf/ft GY -38.000 - - - - 37 UNI Ibf/ft GY -38 000 - - - - 38 UNI Ibf/ft GY -38 000 - - - - 39 UNI Ibf/ft GY -38 000 - - - - 40 UNI Ibf/ft GY -38.000 - - - _ 41 UNI Ibf/ft GY -38.000 - - - - 42 UNI Ibf/ft GY -38 000 - - - - 43 UNI Ibf/ft GY -38.000 - - - - , 44 UNI Ibf/ft GY -38 000 - - - - 55 UNI Ibf/ft GY -38.000 - - - - 56 UNI Ibf/ft GY -38.000 - - - - 57 UNI Ibf/ft GY -38.000 - - - - 58 UNI Ibf/ft GY -38 000 - 67 UNI Ibf/ft GY -38.000 - - 68 UNI Ibf/ft GY -38 000 - - - - 69 UNI Ibf/ft GY -38 000 - - - - 1 70 UNI Ibf/ft GY -38.000 - - - - Beam Loads : 3 UPLIFT Beam Type Direction Fa Da -Fb Db Ecc. ' (ft) (ft) 33 UNI Ibf/ft Y 77.000 0.000 - 13 134 - i UNI Ibf/ft Y 57.000 13 134 - 13.300 - r 34 UNI Ibf/ft Y 57.000 0.000 - 12.968 - UNI Ibf/ft Y 57 000 12.968 - 13.300 - 35 UNI Ibf/ft Y 57.000 0.000 - 12 802 - UNI Ibf/ft Y 53.000 12 802 - 13.300 - 36 UNI Ibf/ft Y 77 000 0.000 - 13 134 - UNI Ibf/ft Y 57.000 13 134 - 13 300 - 37 UNI Ibf/ft Y 57.000 0.000 - 12.968 - UNI Ibf/ft Y 57.000 12 968 - 13.300 - 38 UNI Ibf/ft Y 57.000 0 000 - 12.802 - UNI Ibf/ft Y 53.000 12.802 - 13.300 - 39 UNI Ibf/ft Y 77 000 0.000 - 13.134 - UNI Ibf/ft Y 57.000 13 134 - 13.300 _ - 40 UNI Ibf/ft Y 57.000 0.000 - 12.968 - UNI Ibf/ft Y 57.000 12.968 - 13 300 - 41 UNI Ibf/ft Y 57.000 0 000 - 12.802 - UN! Ibf/ft Y 53.000 12.802 - 13 300 - 42 UNI Ibf/ft Y 77.000 0.000 - 13 134 - Print Time/Date 15/05/201515 43 STAAD Pro V8!20 07.05.15 Print Run 9 of 19 Friscl AJob No Sheet No Rev T.B.D. Result Software licensed to Part Job Title SOUTHOLD LANDFILL Ref By Date15-May-15 Chd Client File South row 13 3.std Date/time 15-May-2015 15:42 Beam Loads : 3 UPLIFT Cont... Beam Type Direction Fa Da Fb Db Ecc. (ft) (ft) 42 UNI Ibf/ft Y 57.000 13.134 - 13 300 - 43 UNI Ibf/ft Y 57.000 0.000 - 12.968 - UNI Ibf/ft Y 57.000 12.968 - 13.300 - 44 UNI lbf/ft Y 57 000 0.000 - 12.802 - UNI Ibf/ft ' Y 53.000 12.802 - 13.300 - 55 UNI Ibf/ft Y 53.000 0.000 - 12 636 - UNI Ibf/ft Y 53.000 12 636 - 13 300 - 56 UNI Ibf/ft Y 53.000 0.000 - 12.636 - UNI Ibf/ft Y 53.000 12.636 - 13.300 - 57 UNI Ibf/ft Y 53.000 0.000 - 12.636 - UNI Ibf/ft Y 53.000 12.636 - 13 300 - 58 UNI Ibf/ft Y 53 000 0.000 - 12.636 - UNI Ibf/ft Y 53.000 12.636 - 13.300 - 67 UNI Ibf/ft Y 53.000 - - - - 68 UNI Ibf/ft Y 53 000 - - - - 69 UNI Ibf/ft Y 53.000 - - - - 70 UNI Ibf/ft Y 53.000 - - - - Beam Loads : 4 DOWN Beam Type Direction Fa Da Fb Db Ecc. (ft) (ft) 33 UNI Ibf/ft Y -66.000 0.000 - 13.134 - UNI Ibf/ft Y -64.000 13.134 - 13 300 - 34 UNI Ibf/ft Y -64.000 0.000 - 12.968 - UNI Ibf/ft Y -65.000 12.968 - 13.300 - 35 UNI Ibf/ft Y -65 000 0.000 - 12.802 - UNI Ibf/ft Y -65 000 12.802 - 13.300 - 36 UNI Ibf/ft Y -66.000 0.000 - 13.134 - I ' UNI Ibf/ft Y -64.000 13.134 - 13 300 - I ' 37 UNI Ibf/ft Y -64.000 0 000 - 12 968 - UNI Ibf/ft Y -65 000 12.968 - 13.300 - _ 38 UNI Ibf/ft Y -65.000 0.000 - 12.802 - UNI Ibf/ft Y -65 000 12.802 - 13.300 - 39 UNI Ibf/ft Y -66 000 0.000 - 13.134 - UNI Ibf/ft Y -64.000 13.134 - 13.300 - 40 UNI Ibf/ft Y -64 000 0.000 - 12 968 - UNI Ibf/ft Y -65.000 12.968 - 13.300 - 41 UNI Ibf/ft Y -65.000 0.000 - 12 802 - UNI Ibf/ft Y -65.000 12.802 - 13.300 - 42 UNI Ibf/ft Y -66.000 0.000 - 13.134 - UNI Ibf/ft 'Y -64 000 13 134 - 13 300 - 43 UNI Ibf/ft Y -64.000 0 000 - 12.968 - UNI Ibf/ft Y -65.000 12.968 - 13.300 - Print Time/Date'15/05/201515 43 STAAD Pro V8i 20 07.05.15 Print Run 10 of 19 - Job No Sheet No Rev T.B.D. Result f ` - Software licensed to Part Job Title SOUTHOLD LANDFILL Ref By Date15-May-15 Chd Client File South row 13.3.std I Date/time 15-May-2015 15 42 Beam Loads : 4 DOWN Cont... Beam Type Direction Fa Da Fb Db Ecc. (ft) (ft) 44 UNI Ibf/ft Y -65 000 0.000 - 12 802 - - UNI Ibf/ft Y -65.000 12 802 - 13.300 - 55 UNI Ibf/ft Y -65.000 0.000 - 12.636 - UNI Ibf/ft Y -65 000 12 636 - 13.300 - 56 UNI Ibf/ft Y -65 000 0 000 - 12 636 - UNI Ibf/ft Y -65 000 12 636 - 13 300 - 57 UNI Ibf/ft Y -65 000 0.000 - 12.636 - UNI Ibf/ft Y -65.000 12.636 - 13.300 - 58 UNI Ibf/ft Y -65.000 0 000 - 12.636 - UNI Ibf/ft Y -65 000 12 636 - 13.300 - 67 UNI Ibf/ft Y -65 000 - - - - 68 UNI Ibf/ft Y -65.000 - - - - 69 UNI Ibf/ft Y -65 000 - - - - 70 UNI Ibf/ft Y -65 000 - - - - Beam Loads : 5 UNBALANCED UPLIFT Beam Type Direction Fa Da Fb Db Ecc. (ft) (ft) 39 UNI Ibf/ft Y 26 000 0.000 - 13.134 - UNI Ibf/ft Y 23 000 13.134 - 13.300 - 40 UNI Ibf/ft Y 23.000 0 000 - 12 968 - UNI Ibf/ft Y 28.000 12.968 - 13.300 - 41 UNI Ibf/ft Y 28.000 0.000 - 12.802 - UNI Ibf/ft Y 26 000 12.802 - 13 300 - 42 UNI Ibf/ft Y 26 000 0.000 - 13 134 - UNI Ibf/ft Y 23 000 13 134 - 13.300 - 43 UNI Ibf/ft Y 23.000 0.000 - 12 968 - UNI Ibf/ft Y 28.000 12 968 - 13 300 - 44 UNI Ibf/ft Y 28.000 0 000 - 12.802 - UNI Ibf/ft Y 26.000 12.802 - 13.300 - 57 UNI Ibf/ft Y 26 000 0.000 - 12.636 - UNI Ibf/ft Y 26 000 12 636 - 13.300 - 58 UNI Ibf/ft Y 26.000 0.000 - 12.636 - UNI Ibf/ft Y 26.000 12.636 - 13 300 - 69 UNI Ibf/ft Y 26.000 - - - - 70 UNI Ibf/ft Y 26.000 - - - - Print Time/Date 15/05/201515 43 STAAD Pro V8i 20 07 05 15 Print Run 11 of 19 FF07 Job No Sheet No Rev T.B.D. Result Part - Software licensed to Job Title SOUTHOLD LANDFILL Ref By Date15-May-15 Chd Client File South row 13.3.std Date/Time 15-May-2015 15.42 Beam Loads : 6 UNBALANCED DOWN Beam Type Direction Fa Da Fb Db Ecc. (ft) (ft) 39 UNI Ibf/ft Y -112.000 0.000 - 13 134 - UNI Ibf/ft Y -107.000 13.134 - 13.300 - 40 UNI Ibf/ft Y -107.000 0 000 - 12.968 - UNI Ibf/ft Y -111.100 12.968 - 13.300 - 41 UNI Ibf/ft Y -111.100 0.000 - 12.802 - UNI Ibf/ft Y -110.000 12.802 - 13.300 - 42 UNI Ibf/ft Y -112.000 0.000 - 13.134 - UNI Ibf/ft Y -107 000 13.134 - 13.300 - 43 UNI Ibf/ft Y -107 000 0.000 - 12.968 - UNI Ibf/ft Y -111.100 12.968 - 13.300 - 44 UNI Ibf/ft Y -111.100 0 000 - 12.802 - UNI Ibf/ft Y -110.000 12.802 - 13.300 - ' 57 UNI Ibf/ft Y -110.000 0.000 - 12 636 - UNI Ibf/ft Y -109 000 12.636 - 13.300 - 58 UNI Ibf/ft Y -110 000 0.000 - 12.636 - - UNI Ibf/ft Y -109.000 12.636 - 13 300 - 69 UNI Ibf/ft Y -109.000 - - - - 70 UNI Ibf/ft Y -109 000 - - - - Node Loads : 7 BASE POS MOMENT - ZONE 1 Node FX FY FZ MX MY MZ (kip) (kip) (kip) (kip ft) (kip ft) (kip ft) 8 - - - - - -0.821 16 - - - - - -0821 24 - - - - - -0.821 32 - - - - - -0.821 40 - - - - - -0.821 48 - - - - - -0.821 49 - - - - - -0.821 50 - - - - - -0.821 51 - - - -0.821 52 - - - - - -0.821 � 53 - - - - - -0 821 54 - - - - - -0 821 Print Time/Date 15/05/201515 43 STAAD.Pro V8i 20 07 05.15 Print Run 12 of 19 Job No Sheet No Rev Flo;ikl T.B.D. Result 41.0 Part Software licensed to Job Title SOUTHOLD LANDFILL Ref By Date15-May-15 Chd Client File South row 13.3.std Date/Time 15-May-2015 15.42 Node Loads : 8 BASE POS MOMENT - ZONE 2 Node FX FY FZ MX MY MZ (kip) (kip) (kip) (kip-ft) (kip-ft) (kip ft) 8 - - - - - -0.684 16 - - - - - -0.684 24 - - - - - -0.684 32 - - - - - -0 684 40 - - - - - -0.684 48 - - - - - -0.684 49 - - - - - -0.684 50 - - - - - -0.684 51 - - - - - -0.684 52 - - - - - -0.684 53 - - - - - -0.684 54 - - . - - - -0.684 Node Loads : 9 BASE POS MOMENT - ZONE 3 Node FX FY FZ MX MY MZ (kip) (kip) (kip) (kip ft) (kip-ft) (kip ft) 8 - - - - - -0.639 16 - - - - - -0.639 24 - - - - - -0.639 32 - - - - - -0.639 40 - - - - - -0.639 48 - - - - - -0 639 49 - - - - - -0.639 50 - - - - - -0.639 51 - - - - - -0.639 ' 52 - - - - - -0.639 53 - - - - - -0.639 54 - - - - - -0.639 Print Time/Date 15/05/201515.43 STAAD.Pro V8i 20 07 05.15 Pont Run 13 of 19 1 i FAirii4 Job No Sheet No Rev T.B.D. Result Software licensed to Part Job Title SOUTHOLD LANDFILL Ref By Date1 5-May-15 Chd Client File South row 13.3.std Date/Time 15-May-2015 15:42 Node Loads : 10 BASE POS MOMENT - ZONE 4 Node FX FY FZ MX MY MZ (kip) (kip) (kip) (kip ft) (kip-ft) (kip ft) 8 - - - - - -0.639 16 - - - - - -0.639 24 - - - - - -0.639 32 - - - - - -0.639- 40 - - - - - -0.639 48 - - - - - -0.639 49 - - - - - -0.639 50 - - - - - -0.639 51 - - - - - -0 639 52 - - - - - -0.639 53 - - - - - -0.639 54 - - - - - -0.639 Node Loads : 11 BASE POS MOMENT - ZONE 5 Node FX FY FZ MX MY MZ (kip) (kip) (kip) (kip-ft) (kipit) (kip ft) 8 - - - - - -0.730 16 - - - - - -0.730 24 - - - - - -0.730 32 - - - - - -0.730 40 - - - - - -0.730 • 48 - - - - - -0 730 49 - - - - - -0.730 50 - - - - - -0.730 51 - - - - - -0 730 52 - - - - - -0.730 53 - - - - - -0.730 54 - - - - - -0.730 Print Time/Date.15/05/2015 15:43 - STAAD Pro V8l 20.07.05.15 Print Run 14 of 19 F--c49 Job No Sheet No Rev T.B.D. Result OW Software licensed to Part i Job Title SOUTHOLD LANDFILL Ref By DatE15-May-15 Chd Client File South row 13 3.std Date/Time 15-May-2015 15.42 1 Node Loads : 12 BASE NEG MOMENT - ZONE 1 Node FX FY FZ MX MY MZ (kip) (kip) (kip) (kip-ft) (kip t) (kip t) 8 - - - - - 7.075 16 - - - - - 7.075 24 - - - - - 7.075 32 - - - - - 7.075 40 - - - - - 7.075 48 - - - - - 7.075 49 - - - - - 7.075 50 - - - - - 7.075 51 - - - - - 7.075 52 - - - - - 7.075 53 - - - - - 7.075 54 - - - - - 7.075 Node Loads : 13 BASE NEG MOMENT - ZONE 2 Node FX FY FZ MX MY MZ ' I ' (kip) (kip) (kip) (kipft) (kip ft) (kip ft) 8 - - - - - 6.892 16 - - - - - 6.892 24 - - - - - 6.892 ' 32 - - - - 6.892 40 - - - - - 6.892 48 - - - - - 6.892 49 - - - - - 6.892 50 - - - - - 6.892 51 - - - - - 6.892 52 - - - - - 6.892 53 - - - - - 6.892 54 - - - - - 6.892 Pnnt Time/Date 15/05/201515 43 STAAD Pro V8i 20.07.05 15 Print Run 15 of 19 Job No Sheet No Rev T.B.D. Result 411% Software licensed to Part Job Title SOUTHOLD LANDFILL Ref I By Date15-May-15 Chd Client File South row 13.3.std Date/Time 15-May-2015 15 42 Node Loads : 14 BASE NEG MOMENT - ZONE 3 Node FX FY FZ MX MY MZ (kip) (kip) (kip) (kip-ft) (kip-ft) (kip ft) 8 - - - - - 6.390 16 - - - - - 6.390 24 - - - - - 6.390 32 - - - - - 6.390 40 - - - - - 6.390 48 - - - - - 6 390 49 - - - - - 6.390 50 - - - - - 6.390 ' 51 - - - - - 6.390 52 - - - - - 6.390 53 - - - - - 6.390 54 - - - - - 6.390 Node Loads : 15 BASE NEG MOMENT - ZONE 4 Node FX FY FZ MX MY MZ i . (kip) (kip) (kip) (kip'ft) (klp'ft) (kip-ft) 8 - - - - - 6.253 I 16 - - - - - 6 253 I I 24 - - - - - 6.253 32 - - - - - 6.253 40 - - - - - 6 253 48 - - - - - 6 253 49 - - - - - 6.253 50 - - - - - 6.253_ i 51 - - - - - 6 253 52 - - - - - 6.253 53 - - - - - 6.253 54 - - - - - 6.253 i Print Time/Date 15/05/2015 15.43 STAAD.Pro V8i 20.07 05.15 Print Run 16 of 19 -`"1"''-- i'''J Job No Sheet No Rev T.B.D. Result .0146. Software licensed to Part Job Title SOUTHOLD LANDFILL Ref By Dat€15-May-15 Chd Client File South row 13.3.std Date/rime 15-May-2015 15.42 Node Loads : 16 BASE NEG MOMENT - ZONE 5 Node FX FY FZ MX MY MZ (kip) (kip) (kip) (kip-ft) (kip'ft) (kip-ft) 16 - - - - - 6.116 24 - - - - - 6116 32 - - - - - 6.116 40 - - - - - 6.116 48 - - - - - 6.116 49 - - - - - 6.116 50 - - - - - 6116 51 - - - - - 6.116 52 - - - - - 6.116 53 - - - - - 6.116 54 - - - - - 6.116 55 - - - - - 6.116 Node Loads : 17 TRANS EQ Node FX FY FZ MX MY MZ (kip) (ktp) (klp) (kip-ft) (kip ft) (kip-ft) 5 0.035 - - - - _ 6 0.035 - - - - - 13 0.035 - - - - - 14 0 035 - - - - _ 21 0.035 - - - - - 22 0.035 - - - - - 29 0 035 - - - - - 30 0.035 - - - - - 37 0.035 - - - - - 38 0.035 - - - - - 45 0.035 - - - - - 46 0 035 - - - - - Print Time/Date•15/05/201515 43 STAAD.Pro V8i 20 07 05 15 Print Run 17 of 19 Job No Sheet No Rev T.B.D. Result Software licensed to Part Job Title SOUTHOLD LANDFILL Ref By Date15-May-15 Chd Client File South row 13 3.std Date/Time 15-May-2015 15:42 Node Loads : 18 LONG EQ Node FX FY FZ MX MY MZ (kip) (kip) (klp) (kip-ft) (kip-ft) (kip ft) 5 - - 0.035 - - - 6 - - 0 035 - - - 13 - - 0.035 - - - 14 - - 0 035 - - - 21 - - 0.035 - - - 22 - - 0.035 - - - 29 - - 0.035 - - - 30 - - 0.035 - - - 37 - - 0.035 - - - 38 - - 0.035 - - - 45 - - 0.035 - - - 46 - - 0 035 - - - Node Displacement Summary Node UC X Y Z Resultant rX rY rZ (in) (in) (in) (in) (rad) (rad) (rad) Max X 25 57•GENERATE 0.058 -0 155 -0.000 0.166 -0.000 -0.000 0 008 Min X 10 76•GENERATE -0.039 0.094 -0.000 0.102 0.000 0.000 0.005 Max Y 10 76•GENERATE -0.039 0.094 -0.000 0.102 0.000 0.000 0.005 Mtn Y 25 57:GENERATE 0 058 -0.155 -0.000 0.166 -0.000 -0.000 0.008 Max Z 42 37:GENERATE 0.004 -0.011 0.006 0 013 -0 000 -0 000 -0.001 Min Z 42 93:GENERATE 0.002 -0.007 -0.006 0.009 0.000 0.000 -0.000 Max rX 42 93 GENERATE 0.002 -0.007 -0.006 0.009 0.000 0.000 -0.000 Min rX 42 37:GENERATE 0.004 -0.011 0.006 0.013 -0.000 -0.000 -0.001 Max rY 44 93:GENERATE -0 000 0.001 -0.004 0.004 0.000 0.000 -0.000 Min rY 44 37:GENERATE -0.001 0 002 0.004 0.004 -0.000 -0.000 -0.000 Max rZ 25 57:GENERATE 0.058 -0.155 -0.000 0.166 -0.000 -0.000 0.008 Mln rZ 26 55:GENERATE 0.054 -0.141 0 000 0 151 -0.000 -0 000 -0.008 Max Rst 25 57:GENERATE 0 058 -0 155 -0.000 0.166 -0.000 -0.000 0.008 Print Time/Date 15/05/201515 43 STAAD Pro V8i 20.07 05 15 Print Run 18 of 19 Job No Sheet No Rev T.B.D. Result 411% Software licensed to Part Job Title SOUTHOLD LANDFILL Ref By Date15-May-i5 Chd Client File South row 13.3 std Date/Time 15-May-2015 15:42 Beam Force Detail Summary Sign convention as diagrams:-positive above line,negative below line except Fx where positive is compression.Distance d is given from beam end A Axial Shear Torsion Bending Beam L/C d Fx Fy Fz Mx My Mz (ft) (kip) (kip) (kip) (kipft) (kipft) (kipft) Max Fx 74 57 GENERATE 0.000 3.215 0 711 0.000 0.000 -0.000 0.826 Min Fx 15 76.GENERATE 0.000 -1.688 -0.098 0.001 0 000 -0 002 -0.335 Max Fy 28 57:GENERATE 0.000 0.228 1.606 0.000 -0.000 -0 000 3.059 Min Fy 25 25:GENERATE 0 000 -0.073 -1.670 -0.000 -0.000 0.000 -0.230 Max Fz 55 20:GENERATE 13.300 0.000 -0.337 0.123 -0.000 0.000 0.000 Min Fz 55 20.GENERATE 0.000 0 000 0 337 -0.123 -0.000 0.000 0.000 Max Mx 10 39.GENERATE 0.000 0.001 0.000 0.003 0.012 -0 005 -0.000 Min Mx 10 91:GENERATE 0.000 0.001 0.000 -0.003 -0.011 0 005 -0.000 Max My 65 37.GENERATE 0.000 0.213 0.000 -0.013 0.000 0.046 0 002 Min My 55 20.GENERATE 6.650 0.000 -0.000 0.000 -0.000 -0.408 -1 122 Max Mz 25 57 GENERATE 1 949 -0.203 -1.658 -0 000 -0.000 -0.000 3.059 Min Mz 7 89:GENERATE 0.500 -0.096 0.614 0 000 -0.000 0 000 -4.332 Reaction Summary Horizontal Vertical Horizontal Moment Node L/C FX FY FZ MX MY MZ (kip) (kip) (kip) (kipft) (kipft) (kip-ft) Max FX 50 22 GENERATE 1.117 -0.967 0.001 0.002 -0.000 -1.297 Min FX 52 77.GENERATE -1.086 1.612 0.000 0.000 0.000 1.261 Max FY 52 57:GENERATE -0 711 3.215 0.000 0.000 0.000 0.826 Min FY 16 76:GENERATE 0.098 -1.688 0 001 0 002 0.000 -0 335 Max FZ 8 39•GENERATE -0 000 0.233 0.049 0.027 0.000 0 002 Min FZ 8 91•GENERATE -0.000 0 107 -0.048 -0.027 0.000 0.001 Max MX 48 93:GENERATE -0 000 0.128 0 013 0.046 -0.000 0.001 Min MX 48 37 GENERATE -0.000 0.213 -0.013 -0.046 0.000 0.002 Max MY 8 55:GENERATE -0.037 1 312 0.002 0 001 0.001 0.131_ Min MY 8 76.GENERATE 0 056 -0 994 -0.002 -0 001 -0.001 -0 194 Max MZ 52 77:GENERATE -1.086 1.612 0.000 0.000 0.000 1.261 Min MZ 51 31:GENERATE 0.001 0.426 0.000 0.000 0.000 -7.076 Pnnt Time/Date•15/05/201515 43 STAAD Pro V8i 20.07 05 15 Pnnt Run 19 of 19 POST-BEAM END FORCES,(SUMMARY)' , ,`. - • _ Post 2 LOAD COMBO NODE Fx(kip) Fy(kip) Fz(kip) Mx(k-ft) My(k-ft) Mz(k-ft) _ Max Fx 72 57 GENERATED IBCT 50 3.195 0.704 -0.001 0 0.001 0.818 Min Fx 15 76 GENERATED IBC T 16 -1.688 -0.098 0 001 0 -0 002 -0.335 Max Fy 72 77 GENERATED IBC T 50 1.612 1.086 -0 002 0 0.002 1.261 Min Fy 72 22 GENERATED IBCT 50 -0.967 -1.117 0.001 0 -0.002 -1297 Max Fz 15 93 GENERATED IBCT 16 0.235 0.001 0.046 0 -0.026 0.002 Min Fz 15 37 GENERATED IBCT 16 0.446 0.001 -0.047 0 0.027 0.004 Max Mx 15 76 GENERATED IBC T 16 -1.688 -0.098 0.001 0 -0.002 -0 335 Min Mx 15 55 GENERATED IBCT 16 2.601 0.075 -0.002 -0.001 0.003 0.256 Max My 15 37 GENERATED IBC T 16 0.446 0.001 -0.047 0 0.027 0.004 Min My 15 93 GENERATED IBC T 16 0.235 0.001 0.046 0 -0 026 0 002 Max Mz 72 77 GENERATED IBC T 50 1.612 1086 -0.002 0 0.002 1261 Min Mz 72 22 GENERATED IBCT 50 -0.967 -1.117 0.001 0 -0.002 -1.297 Lin ' _ , -TOP CHORD'-BEAM END FORCES'(SUMMARY) . ' f'- '- " : ' TOP CHORD 2 LOAD COMBO NODE Fx(kip) Fy(kip) Fz(kip) Mx(k-ft) My(k-ft) Mz(k-ft) Max Fx 12 22 GENERATED IBCT 13 0.646 -0.603 0.001 0 -0.001 -1201 Min Fx 11 23 GENERATED IBC T 12 -0.629 -1.146 0 0.001 0.001 -0.027 Max Fy 12 57 GENERATED IBC T 13 0.228 1.596 -0.001 0 0.001 3.04 Min Fy 9 25 GENERATED IBCT 9 -0.073 -1.655 0 0 0 -0 228 Max Fz 11 91 GENERATED IBC T 12 -0 043 -0.12 0.014 -0.004 -0.006 0 Min Fz 11 39 GENERATED IBC T 12 -0 072 -0.2 -0.014 0.004 0.007 0 Max Mx 10 39 GENERATED IBC T 11 0.001 0 0.003 0.012 -0.005 0 Min Mx 10 91 GENERATED IBCT 11 0.001 0 -0.003 -0 011 0.005 0 Max My 11 91 GENERATED IBC T 14 -0.043 -0.12 0.014 -0.004 0.021 0.234 Min My 13 39 GENERATED IBCT 14 0.073 0.2 0.01 0.004 -0 022 0 39 Max Mz 9 57 GENERATED IBC 13 -0.203 -1.648 0 0 0.001 3.04 Min Mz 13 76 GENERATED IBC T 14 0.044 -0.768 -0.001 0 0.001 -1.636 _ 1 i „i//1/1 JOB TITLE SOUTHOLD LANDFILL i1Ij 1`4 ® t� JOB NO.T.B.D. SHEET NO. RBI SOLAR CALCULATED BY xxx DATE 5/15/2015 CHECKED BY DATE Purlin Design and Analysis Zone: Zone 2 Mechanical Properties Fy=Yeild Strength 50.0 ksi E=Modulus of Elasticity 29000.0 ksi 52b-Bending Factor 1 67 S2p-Comp.Factor 1.8 C„,-for simple beam 1 R-for Simple Span 0 65 ilAr=,,,, sem h cf.'.•':r:; !'LI - -•i” iI ,1'„$` f :1 B1 2.125 _reefer.`% 7)5: !; P9 B2 2.375 i _ r ▪ , R; '1 - i t 0.0625 v=. ;_i - _C- R 0.1875 :.!=-7,' t--0V,::, • ' - - d 0.911 Solar Purlin Section Wt Iblft Area(in') S"Ps Sono. lx V.(kips) M0(k.in) P.(kips) 7"Z 16 GA 2.595 0 545 1.479 1.477 5.463 2.695 ' 46.64 6 161 Ls Span 13.3 ft Design Forces biri=Tnbutary Width 3.28 ft Mm"x=W*bm`L2/8 32.01 kip.in w=Purlin wt 0 79 psf V, W`b,i`L/2 0.80 kips wwi=Panels wt 2.80sf p Rmex Vmax 0.80 kips whg Collateral Load 0.00 psf Flexural Stress,Check-Flexure about x-x WDL=E(wp+wpl+whg) 3.59 psf Flexure Check x-x PASS WL=Snow(Live)Load 11 48 psf Shear Check x-x PASS Ww Wmd Load 32.72 psf Ww Wmd Load UPLIFT 17.33 psf Check Uplift Wind Deflection Check M,, (Ww WDL)'bm"L`/8 11.97 kip.in Sact 5/384•(WDL+WL)b,;L4/(E•I0) 0 54 in Mp=R`S"„pg*Fy 48.00 kip.in Sat L/120 1.33 in M,Ii=M,vQb 28.74 kip.in 1 OK OK DL+WL+LL Combination P"x n2`E`Ix/(KL)2 I 61 43 k I ax 1-(S2c`P/Pex) 1 Eq 6.53 CI=P/P,+Cm•M/(ax*Me) 0.686275 Eq.6 54 C2=P/Pe+M/(M") 0.686275 Eq 6.54 if(P/Pa<=0.15,C2,C1) 0.686275 OK Max.Stress Ratio= )0.6862751 STEEL BEAM AND COLUMN ANALYSIS/CODE CHECK Stress Code Check Per AISC 13th Edition Manual(ASD) For W,S,M,and HP Shapes Project Name: SOUTHOLD LANDFILL Client. SunEdison Project No T.B.D Prep.By .)oor I Date 5/15/2015 Input Data: Post 2 Member Size: Member Properties: Y Select W6x8 5 A= 2 52 m"2 j_ d= 5 830 in I 8=0 195 Member Loadin s: — tw= 0 170 in P= 0.97 kips bf= 3 940�.in Mx= 1 30 ~ft-kips tf= 0.195 _m My=—"0.00 ft-kips k= -0.445 in d=5 83 — —•— — -X Ix=_1490 _in"4 Design Parameters: Sx= 5.10 in"3 t,=0 17 Fy= 50 00 ksi rx= 2 43 in _ Kx= 1 20 _ Zx=_ 5 73 in"3 r bf=3 94 Ky= 1.20 — ly=_ _1.99 in"4 Lx=_ 3 410_ft Sy= 1.01 in"3 W6x8.5 Section Ly= 3 410 ft Ty=_ 089 in Lb= 3 410 ft Zy= 1 56 in"3 Sha.e Factors: Flex Type= Single _ J= 0 033—in"4 SFx=_ 1 12 Cb= 1 67 Cw= 15 8 in"6 SFy= 1 54 Results: For Axial Compression: For X-axis Bending:_ For Y-axis Bending:_ Kx'Lx/rx=_ 20.21 Lp= 3 14 ft fby= 0.02 ksi Ky*Ly/ry= 55.17 Lr= 9.47 ft Fby= 44 63 ksi Fe= 94 03— rts= 1.05 Mry= 3.76 ft-kips fa= 0 38 ksi fbx= 3 05 ksi Fa= — 23 97 ksi Fbx= 32.83 kmPa= `60 39—kips Mrx= 13.95 ft-kips Nodal Lat.Brcq Requirements: Nodal Lat.Brcg Requirements: Pbr= 0 01 kips Pbr= 0.06 kips � (3br= 0 38 kip/in pbr= 1 35 kip/in Stress Ratio: S.R = 0 101 Eqn.H1-lb < S R.s 1,Member is adequate for loading Comments: 5/15/2015 Z\Engineering Projects\RBI Solar\SOUTHOLD,NY\ Page 2 3 42 PM Engineering Request-SunEdison-Southold LANDFILL NY-2015-5-14(20 degrees) of 5 • TopChord Design-Compression Member .. ', Input Data I ' : TOP'.CHORD,2, • ' Member Section 4x4x14ga ' A=Tube Width 4 in yl B= Tube Length 4 int R=Corner Inner Radius 0.09375 in t=Thickness 0 083 in i KLx=Buckling around x-x 1 95 ft — KLy=Buckling around y-y 3 9 ft I ' E=Modulus of Elasticity 29500 ksi Fy=Yield Stress 50 ksi c G=Shear Modulus 11300 ksi I rj 1 c ' ,. ' - `Calculated Parameter ' - - - -_11,_. ' A4plied-Forces• - , .- 1-Properties of 90°corner M 3.04 kip.ft r=R+t12, Centerline of Dimension 0.135 in P 0.00001 kips u=n.r/2,Arc Length 0.212 in c=0 637.r Distance of c g.from center 0 086 in 2-Flat widths of flanges and webs _ Flat width of Dim a=A-(2 r+t) 3.6465. in Flat width of Dim. b=B-(2 r+t) 3.6465 in ;_ - " - - ;. ' ' ' ' Calculation.of IX - ; Element L, Length(in) Y, Distance to the center(in) L xY2 lx Flanges 2.a 7.293 B/2-t/2 1.959 27 974 0.000 Web 2.b 7.293 0 0.000 0 000 8 081 Corners 4.0 0 850 b/2+c 1.909 3.098 0.000 Sum 15.436 3.868 31 072 8.081 . - Calculation of I, : _ Element L, Length(in) X, Distance to the center(in) L x X2 ly' Flanges 2 a 7.293 0 0.000 0 000 8.081 Web 2 b 7.293 A/2-t/2 1.959 27 974 0.000 Corners 4.0 0.850 a/2+c 1 909 3.098 0.000 Sum 15 436 3.868 31 072 8.081 Section.Properties A L x t 1 2812 in` Ix t x(Lx y2+Ix') 3.2497 in4 Iy t x(L x X2+Iy') 3 2497 in4 S. Ix/(B/2) 1.6249 in" Sr l /(A/2) 1.6249 in' rx (Ix/A)°5 1 5927 in ry (Ir/A)°5 1 5927 in , • Nominal Buckling Stress - . _ - KLx/rx 14.69 KLy/ry 29.38 KL/r 29 38 Fe 7[2.E/(KL/r)2 337.19 ksi a,c (Fy/Fe)U b 0.39 Fn 46.99 ksi : ' - - ; ` ,-Effective'Areal - , - - .- - effective width of compression flange w/t=alt 43.93 A, 1.052/(k)°5 x(wit)x(FdE)°5 0.92 P (1-0.22/X)/7, 0.83 ae 3.01 in effective width of web element w/t=b/t 43.93 a, 1.0521(k)°5 x(w/t)x(FJE)°5 0 92 p (1-0.22/X)/X. 083 be 3.01 in _ , Allowable Axial Load - . " . . . ,- Ae Ae=A-2 x t x[(a-ae)+(b-be)] 1 07 in2 Pn Pn Ae x Fe 50.28 kips ac 1.80 Pa=Pn inc 27.93 kips ' ' - , - Check Compression Stresses _ , - .: Loads from Wind? Cbl Cbl=(P/Pe) 0.00 NO Allowable Stress Unity I 1 0.00 Section is OK Computing of M„x - . - - , - By using the effective width of compression flange and assuming the web is fully effective,the neutral axis can be located as follow: Element L, Length(in) y, Distance to top fiber(in) L y L.y2 C Flanges ae 3.011 t/2 0 042 0.125 0 005 Web 2.b 7.293 B/2 2 000 14.586 29 172 C.Corners 2.0 0.425 c+t/2 0.128 0 054 0 007 T. Flanges ae 3.011 B4/2 3.959 11.917 47.175 T Corners 2.0 0.425 B-c-t/2 3.872 1.645 6 372 Sum 14.164 10.000 28.328 82.731 ycg= L.y/L 2.000 Z=R+t 0.177 in - The max stress of 50 ksi ocurs in the compression flange as assumed in the calculation - ., Check the-effectiveness of'the`Web - ' f1 (ycg-Z)Fy/Ycg 45.58 ksi f2 -(B-Ycg-Z)Fy/Ycg -45 58 ksi W f2/f1 -1 00 k 4+2(1-03+2(1-y) 24 00 h/t be/t 43.93 A, 1.052/(k)°5 x(h/t)x(f1/E)°5 0.37 p /X(1-0.22/20 1.10 be 3.65 in b1 be/(3-W) 0.91 in b2 1.82 in b1+b2 2.73 in 2Iweb 2(1/12)(b)3 8.08 in4, E(Ly2) 82.73 in4 (-)(El )(Ycg)2 56 66 in4 l'x 34.16 in4 Ix=1'xt 2.83 in4 Sex=lx/Ycg 142 in3 ' Cb=1.0 for combined axial load and bending moment j 2b2d2t/(b+d) 4 02 in4 Sf fullSx 1.62 in4 Le 0 36Cbn.(E I.G.j)05/(Fy Sf) 76.60 ft Fe Cbn.(E I.G.j)05/(L.Sf) 5455.60 ksi - . . - " . _ - Allowable Bending,Moment : - ' _ _ - - -- Mnx 5 906 kip.ft ab 1 670 Ma=Max/ab 3.537 kip ft ' , ' - - - ' ' 'CheckStresses " ' _ , Cmx 0.6-0 4*M1/M2 0.60 Loads from Wind? Cbl (P I Pa) (Cmx Mx/Ma) 0 52 NO Cb2 (P/Pa)+(Mx I Ma) 0.86 Allowable Stress Unity I 1 Cb If((P/Pa)<=0 15,Cb2,Cb1) 0.86 Section is OK _ Job No Sheet No Rev 477124 T.B.D. ] Reaction Software licensed to Part • Job Title SOUTHOLD LANDFILL Ref - ' By Date15-May-15 Chd Client File South row 13.3.std Datelrime 15-May-2015 15.42 Reaction Summary Horizontal Vertical Horizontal Moment Node UC FX FY FZ MX MY MZ (kip) (kip) (kip) (kip-ft) (kip-ft) (kip-ft) Max FX 50 22:GENERATE 1.117 -0.967 0.001 0 002 -0 000 -1.297 Min FX 50 77.GENERATE -1.086 1.612 -0 002 -0 002 0.000 1 261 Max FY 50 57:GENERATE -0 704 3.195 -0.001 -0.001 0 000 0.818 Min FY 16 76.GENERATE 0 098 -1.688 0.001 0.002 0.000 -0.335 Max FZ 16 93•GENERATE -0.001 0.235 0.046 0.026 -0.000 0.002 Min FZ 16 37:GENERATE -0.001 0.446 -0.047 -0.027 -0 000 0 004 Max MX 16 93•GENERATE -0 001 0.235 0.046 0.026 -0.000 0.002 Min MX 16 37:GENERATE -0 001 0 446 -0.047 -0.027 -0 000 0.004 Max MY 16 76:GENERATE 0.098 -1 688 0 001 0.002 0.000 -0.335 Min MY 16 55:GENERATE -0 075 2.601 -0.002 -0.003 -0.001 0.256 Max MZ 50 77.GENERATE -1.086 1.612 -0.002 -0 002 . 0.000 1.261 Min MZ 50 31.GENERATE 0.001 0 426 -0.000 -0.000 0 000 -7.076 • 1 I Print Time/Date 15/05/2015 15 43 STAAD.Pro V8i 20 07.05 15 Print Run 1 of 1 Project Name: SOUTHOLD LANDFILL Project No: T.B.D. Wind Zone: interior Rows 1 Design Criteria: Code: IBC 2009 Dead Load: 5.0 psf Chord Length= 13.13 ft Roof Live Load: 0 0 psf Ground Snow: 20 0 psf Wind Speed: 120 mph (Exposure C Assumed) Module Tilt: 20 0 deg Purlin Spacing: 3.28 ft Snow Load Calculation:pf=0.7CsCeCtlsPg Ce= 1.0 4= 1.2 15= 08 Cs= 0.91 p5= 11.5 psf Wind Load Calculation:q=0.00256K1KdKZSV2 Iw = 100 Mean Roof Height=, 33.0 ft(Per CPP Wind Tunnel Analysis) Kd= 0 85 K,t= 10 IW= 0 77 q= 24.2 psf STAAD`M'odel,Input('Z-Purlinl Loading)' Dead Load: 0.016 klf Roof Live: 0.000 klf Snow Load: 0.038 klf Wind: Balanced Wind(Applied to all purlins): Wind Uplift -0.062 klf -0.052 klf -0.048 klf -0.044 klf -0.040 klf Wind Down 0.065 klf 0.046 klf 0.030 klf 0.026 klf 0.022 klf Wind: Unbalanced Wind(Applied to lower half purlins ONLY): Wind Down -0.108 klf -0.069 klf -0.037 klf -0.031 klf -0.028 klf Wind Uplift 0.026 klf 0.022 klf 0.022 klf 0.021 klf 0.019 klf Base Moment: (Downward) -12.689 k-ft -8.033 k-ft -4.199 k-ft -4.108 k-ft -3.652 k-ft Base Moment: (Uplift) 1.734 k-ft 1.369 k-ft 1.552 k-ft 1.369 k-ft 1.369 k-ft NOTE THE DIRECTION OF LOAD 20.0 Degree Tilt - - , ' * :,' - ,-- : ', : • Zone: 1 2 3 4 5 Zone Width 0 00 ft 13.13 ft 26.27 ft 39 40 ft 52.54 ft Roof Pressure edeffidients,(WihdiruntlefleSt ROSOftg! Zone: 1 2 3 4 5 GCUplift -0 78 -0.65 -0 60 -0.55 -0 50 N Downward 0 82 0.58 0.38 0.33 0.28 , . Zone: 1 2 3 4 5 Uplift -18.94 -15 71 -14.51 -13.30 -12.09 Downward 19.74 14.10 9 27 8.06 6 85 Base cif'Plitt,03Officients Mirid Tunnel TOO'RegUlt4,_ Zone: 1 2 3 4 5 Negative -0 23 -0.15 -0.08 -0.08 -0 07 GCMV Positive 0 03 0.03 0 03 0.03 0.03 - ' _Base,Of Pott Mothetift„(Plf=Gemeci*Arektdfl: ' ' ', . Zone: 1 2 3 4 5 Negative(Downward) -12 69 k-ft -8 03 k-ft -4.20 k-ft -4.11 k-ft -3.65 k-ft Positive(Uplift) 0.13 k-ft 0 10 k-ft 0 12 k-ft 0.10 k-ft 0.10 k-ft lliiiiirde Patti Coefficients(Wind TOniti011 Rdstiltg: , - . . Zone: 1 2 3 4 5 4*GCmHy Negative -136 -0.87 -0.46 -0.39 -0 35 Positive 0.33 0.27 0 27 0.27 0.24 Lower Porliii Pressures(p-LtegGC-mHe4)ip -q , Zone: 1 2 3 4 5 Negative(Downward) -32 88 -20.95 -11 12 -9.51 -8.38 Positive(Uplift) 7 90 6.61 6.61 6.45 5.80 F1074 Job No Sheet No Rev T.B.D. SK-1 Software licensed to Part Job Title SOUTHOLD LANDFILL Ref By Det 15-May-15 Chd Client Piie Interior row std Detemn,e 15-May-201515 07 T �\ �` N \�\ i& °1a °2a '� 014 \\ .♦ �\ \ cY ♦ a2. N. \\ob \b20\ �♦o282 \\ 11 \\ 342 aS: �♦♦ �\ `044 `\ 555043' °41 / SK-1 Pont Time/Date 15/05/2015 15 11 STAAD Pro V8t 20 07 05 15 Print Run 1 of 1 Job No i Sheet No Rev T.B.D. SK-2 4.40 r4r Software licensed to Part Job Tide SOUTHOLD LANDFILL Ref By Dah15-May-15 Chd Client File Intenor row.std DateTme 15-May-201515 07 • • s \ goft ° A • 00ft opoft N•t, 90k,\� • 2 67 00ft•.16IN\ \ \0 66ft \n ?b 'b \ \ `ti 41k 0f1 \ br• BhC SK-2 Print Time/Date 15105/2015 15 12 STAAD Pro V8t 20 07 0515 Print Run 1 of 1 i I { Fiiirsi Job No Sheet No Rev T.B.D. Result Part Software licensed to Job Title SOUTHOLD LANDFILL Ref By Date15-May-15 Chd Client F11e Interior row.std Date/rtme 15-May-2015 15:07 Nodes Node X Y Z (ft) (ft) (ft) 1 0.000 0.612 0.000 2 9.834 4.191 0.000 3 3.663 1.945 0 000 4 6.171 '2 858 0.000 5 1.831 1.279 0.000 6 8.002 3.525 0.000 8 8.002 0.118 0.000 9 0.000 0.612 20.000 10 9 834 4 191 20.000 11 3.663 1.945 20 000 12 6.171 2.858 20.000 13 1.831 1.279 20.000 14 8 002 3.525 20.000 16 8.002 0.118 20.000 17 0 000 0 612 40.000 18 9.834 4.191 40.000 19 3.663 1.945 40.000 20 6.171 2.858 40 000 21 1.831 1 279 40.000 22 8 002 3 525 40.000 24 8 002 0.118 40.000 25 0.000 0.612 60 000 26 9 834 4.191 60.000 27 3 663 1 945 60.000 28 6.171 2.858 60.000 29 1.831 1.279 60.000 30 8 002 3.525 60.000 32 8.002 0118 60.000 33 0 000 0.612 80.000 34 9 834 4 191 80.000 35 3 663 1 945 80.000 36 6.171 2 858 80.000 37 1.831 1.279 80.000 38 8.002 3.525 80.000 40 8.002 0.118 80 000 41 0 000 0.612 100 000 42 9.834 4.191 100.000 43 3.663 1.945 100.000 44 6 171 2.858 100.000 45 1.831 1.279 100.000 46 8.002 3 525 100 000 48 8 002 0.118 100.000 49 1.831 0.118 100.000 50 1.831 0.118 80.000 I 51 1.831 0.118 60.000 Pnnt Time/Date 15/05/201515 09 STAAD Pro V8i 20.07.05 15 Print Run 1 of 19 I t 1."" --"1 Job No Sheet No Rev T.B.D. Result I' Software licensed to Part I Job Title SOUTHOLD LANDFILL Ref By Date15-May-15 Chd Client File Interior row.std Date/Time 15-May-2015 15:07 Nodes Cont... Node X Y Z (ft) (ft) (ft) 52 1.831 0118 40.000 53 1.831 0.118 20.000 54 1.831 0 118 0.000 55 8.002 0 618 0.000 56 8.002 - 0.618 20.000_ Beams Beam Node A Node B Length Property 13 (ft) (degrees) 1 1 5 1 949 3 0 2 3 4 2.669 3 0 3 4 6 1.949 3 0 4 5 3 1.949 3 0 5 6 2 1.949 3 0 7 8 55 0.500 1 0 9 9 13 1 949 3 0 10 11 12 2 669 3 0 11 12 14 1.949 3 0 . 12 13 11 1 949 3 0 13 14 10 1.949 3 0 15 16 56 0.500 1 0 17 17 21 1.949 3 0 18 19 20 2.669 3 0 19 20 22 1.949 3 0 20 21 19 1.949 3 0 21 22 18 1.949 3 0 23 24 22 3.407 1 0 25 25 29 1.949 3 0 26 27 28 2.669 3 0 27 28 30 "1949 3 0 28 29 27 1 949 3 0 29 30 26 1.949 3 0 31 32 30 3 407 1 0 33 2 10 20.000 5 20 34 10 18 20.000 5 20 35 18 26 20.000 5 20 36 4 12 20 000 5 20 37 12 20 20.000 5 20 38 20 28 20.000 5 20 39 3 11 20.000 5 20 40 11 19 20.000 5 20 41 19 27 20.000 5 20 42 1 9 20.000 5 20 Print Time/Date 15/05/2015 15:09 STAAD.Pro V8i 20 07 05 15 Print Run 2 of 19 I Job No Sheet No Rev 111%: T.B.Q. Result Part Software licensed to Job Title SOUTHOLD LANDFILL Ref By Date15-May-15 Chd Client File Interior row.std Date/Time 15-May-2015 15.07 Beams Cont... Beam Node A Node B Length Property ii (ft) (degrees) 43 9 17 20 000 5 20 44 17 25 20 000 5 20 47 33 37 1.949 3 0 48 35 36 2 669 3 0 49 36 38 1.949 3 0 50 37 35 1.949 3 0 51 38 34 1.949 3 0 53 40 38 3 407 1 0 55 26 34 20.000 5 20 56 28 36 20.000 5 20 57 27 35 20.000 5 20 58 25 33 20.000 5 20 59 41 45 1.949 3 0 60 43 44 2 669 3 0 61 44 46 1.949 3 0 62 45 43 1.949 3 0 63 46 42 1.949 3 0 65 48 46 3.407 1 0 67 34 42 20.000 5 20 68 36 44 20.000 5 20 69 35 43 20.000 5 20 70 33 41 20.000 5 20 71 49 45 1161 1 0 72 50 37 1.161 1 0 73 51 29 1.161 1 0 74 52 21 1.161 1 0- 75 53 13 1.161 1 0 76 54 5 1 161 1 0 77 55 6 2.907 1 0 78 56 14 2.907 1 0 79 6 56 20.210 4 0 80 14 55 20.210 4 f 0 Print Time/Date•15/05/2015 15 09 STAAD.Pro V8i 20.07.05 15 Pnnt Run 3 of 19 Job No Sheet No Rev T.B.D. Result ili% -. Software licensed to Part Job Title SOUTHOLD LANDFILL Ref By Date15-May-15 Chd Client File Interior row.std Date/Time 15-May-2015 1507 Basic Load Cases Number Name 1 DEAD LOAD 2 SNOW LOAD 3 UPLIFT 4 DOWN 5 UNBALANCED UPLIFT 6 UNBALANCED DOWN 7 BASE POS MOMENT-ZONE 1 8 BASE POS MOMENT-ZONE 2 9 BASE POS MOMENT-ZONE 3 10 BASE POS MOMENT-ZONE 4 11 BASE POS MOMENT-ZONE 5 12 BASE NEG MOMENT-ZONE 1 13 BASE NEG MOMENT-ZONE 2 14 BASE NEG MOMENT-ZONE 3 15 BASE NEG MOMENT-ZONE 4 16 BASE NEG MOMENT-ZONE 5 17 TRANS EQ — 18 LONG EQ Combination Load Cases Comb. Combination UC Name Primary Primary UC Name Factor 19 GENERATED IBC TABLE7ASD241 1 1 DEAD LOAD 1.00 20 GENERATED IBC TABLE7ASD241 2 1 DEAD LOAD 1.00 2 SNOW LOAD 1 00 21 GENERATED IBC TABLE7ASD241 3 1 DEAD LOAD 1.00 2 SNOW LOAD 0 75 22 GENERATED IBC TABLE7ASD241 4 1 DEAD LOAD 1.00 3 UPLIFT 100 23 GENERATED IBC TABLE7ASD241 5 1 DEAD LOAD 1.00 4 DOWN 1.00 24 GENERATED IBC TABLE7ASD241 6 1 DEAD LOAD 1.00 5 UNBALANCED UPLIFT 1.00 25 GENERATED IBC TABLE7ASD241 7 1 DEAD LOAD 1.00 6 UNBALANCED DOWN 1.00 26 GENERATED IBC TABLE7ASD241 8 1 DEAD LOAD 1.00 7 BASE POS MOMENT-ZONE 1 1.00 27 GENERATED IBC TABLE7ASD241 9 1 DEAD LOAD 1.00 8 BASE POS MOMENT-ZONE 2 1 00 28 GENERATED IBC TABLE7ASD241 10 1 DEAD LOAD 1.00 9 BASE POS MOMENT-ZONE 3 1 00 29 GENERATED IBC TABLE7ASD241 11 1 DEAD LOAD 1.00 10 BASE POS MOMENT-ZONE 4 1 00 Print Time/Date'15/05/201515 09 STAAD.Pro V8i 20.07.05.15 Print Run 4 of 19 Job No Sheet No Rev T.B.D. Result %Software licensed to Part Job Title SOUTHOLD LANDFILL Ref By Date15-May-15 Chd Client File Interior row.std Date/Time 15-May-2015 15:07 Combination Load Cases Cont... Comb. Combination L/C Name Primary Primary LIC Name Factor 30 GENERATED IBC TABLE7ASD241 12 1 DEAD LOAD 1.00 11 BASE POS MOMENT-ZONE 5 1.00 31 GENERATED IBC TABLE7ASD241 13 1 DEAD LOAD 1.00 12 BASE NEG MOMENT-ZONE 1 1.00 32 GENERATED IBC TABLE7ASD241 14 1 DEAD LOAD 1.00 13 BASE NEG MOMENT-ZONE 2 1.00 33 GENERATED IBC TABLE7ASD241 15 1 DEAD LOAD 1.00 14 BASE NEG MOMENT-ZONE 3 1.00 34 GENERATED IBC TABLE7ASD241 16 1 DEAD LOAD 1.00 15 BASE NEG MOMENT-ZONE 4 1 00 35 GENERATED IBC TABLE7ASD241 17 1 DEAD LOAD 1.00 16 BASE NEG MOMENT-ZONE 5 1.00 36 GENERATED IBC TABLE7ASD241 18 1 DEAD LOAD 1 00 17 TRANS EQ 0.70 37 GENERATED IBC TABLE7ASD241 19 1 DEAD LOAD 1.00 18 LONG EQ 0.70 38 GENERATED IBC TABLE7ASD241 20 1 DEAD LOAD 1.00 17 TRANS EQ -0 70 39 GENERATED IBC TABLE7ASD241 21 1 DEAD LOAD 1.00 18 LONG EQ -0.70 40 GENERATED,IBC TABLE7ASD241 22 1 DEAD LOAD 1.00 3 UPLIFT 0.75 41 GENERATED IBC TABLE7ASD241 23 1 DEAD LOAD 1.00 4 DOWN 0 75 42 GENERATED IBC TABLE7ASD241 24 1 DEAD LOAD 1.00 5 UNBALANCED UPLIFT 0.75 43 GENERATED IBC TABLE7ASD241 25 1 DEAD LOAD 1.00 6 UNBALANCED DOWN 0.75 44 GENERATED IBC TABLE7ASD241 26 1 DEAD LOAD 1.00 7 BASE POS MOMENT-ZONE 1 0.75 45 GENERATED IBC TABLE7ASD241 27 1 DEAD LOAD 1.00 8 BASE POS MOMENT-ZONE 2 0.75 46 GENERATED IBC TABLE7ASD241 28 1 DEAD LOAD 1.00 9 BASE POS MOMENT-ZONE 3 0.75 47 GENERATED IBC TABLE7ASD241 29 1 DEAD LOAD 1.00 10 BASE POS MOMENT-ZONE 4 0 75 48 GENERATED IBC TABLE7ASD241 30 1 DEAD LOAD 1.00 11 BASE POS MOMENT-ZONE 5 0.75 49 GENERATED IBC TABLE7ASD241 31 1 DEAD LOAD 1 00 12 BASE NEG MOMENT-ZONE 1 0.75 50 GENERATED IBC TABLE7ASD241 32 1 DEAD LOAD 1 00 13 BASE NEG MOMENT-ZONE 2 0.75 51 GENERATED IBC TABLE7ASD241 33 1 DEAD LOAD 1.00 14 BASE NEG MOMENT-ZONE 3 0.75 52 GENERATED IBC TABLE7ASD241 34 1 DEAD LOAD 1.00 Print Time/Date.15/05/201515 09 STAAD.Pro V8i 20.07 05 15 Print Run 5 of 19 Forr7S Job No Sheet No Rev Part T.B.D. Result _ - Software licensed to Job Title SOUTHOLD LANDFILL Ref By Date15-May-15 Chd Client File Interior row std Date/Time 15-May-2015 15:07 Combination Load Cases Cont... Comb. Combination UC Name Primary Primary UC Name Factor 15 BASE NEG MOMENT-ZONE 4 0.75 53 GENERATED IBC TABLE7ASD241 35 1 DEAD LOAD 1.00 16 BASE NEG MOMENT-ZONE 5 0 75 54 GENERATED IBC TABLE7ASD241 36 1 DEAD LOAD 1.00 3 UPLIFT 0.75 2 SNOW LOAD 0.75 55 GENERATED IBC TABLE7ASD241 37 1 DEAD LOAD 1.00 4 DOWN 0.75 2 SNOW LOAD 0 75 56 GENERATED IBC TABLE7ASD241 38 1 DEAD LOAD 1.00 5 UNBALANCED UPLIFT 0.75 2 SNOW LOAD 0.75 57 GENERATED IBC TABLE7ASD241 39 1 DEAD LOAD 1.00 - 6 UNBALANCED DOWN 0.75 2 SNOW LOAD 0.75 58 GENERATED IBC TABLE7ASD241 40 1 DEAD LOAD 1.00 7 BASE POS MOMENT-ZONE 1 0.75 2 SNOW LOAD 0.75 59 GENERATED IBC TABLE7ASD241 41 1 DEAD LOAD 1 00 8 BASE POS MOMENT-ZONE 2 0 75 2 SNOW LOAD 0 75 60 GENERATED IBC TABLE7ASD241 42 1 DEAD LOAD 1.00 9 BASE POS MOMENT-ZONE 3 0.75 2 SNOW LOAD 0.75 61 GENERATED IBC TABLE7ASD241 43 1 DEAD LOAD 1.00 10 BASE POS MOMENT-ZONE 4 0 75 2 SNOW LOAD 0.75 62 GENERATED IBC TABLE7ASD241 44 1 DEAD LOAD 1.00 11 BASE POS MOMENT-ZONE 5 0.75 2 SNOW LOAD 0.75 63 GENERATED IBC TABLE7ASD241 45 1 DEAD LOAD '1.00 J 12 BASE NEG MOMENT-ZONE 1 0.75 2 SNOW LOAD 0.75 64 GENERATED IBC TABLE7ASD241 46 1 DEAD LOAD 1.00 13 BASE NEG MOMENT-ZONE 2 0.75 2 SNOW LOAD 0.75 65 GENERATED IBC TABLE7ASD241 47 1 DEAD LOAD 1.00 14 BASE NEG MOMENT-ZONE 3 0.75 2 SNOW LOAD 0.75 66 GENERATED IBC TABLE7ASD241 48 1 DEAD LOAD 1.00 15 BASE NEG MOMENT-ZONE 4 0.75 2 SNOW LOAD 0 75 67 GENERATED IBC TABLE7ASD241 49 1 DEAD LOAD 1.00 16 BASE NEG MOMENT-ZONE 5 0.75 2 SNOW LOAD 0.75 Pnnt Time/Date 15/05/2015 15.09 STAAD.Pro V8120.07.05.15 Print Run 6 of 19 -- Job No Sheet No Rev T.B.D. Result 411110 Software licensed to Part Job Title SOUTHOLD LANDFILL Ref By oatel5-May-15 Chd Client File Interior row.std Date/time 15-May-2015 15.07 Combination Load Cases Cont... Comb. Combination UC Name Primary Primary UC Name Factor 68 GENERATED IBC TABLE7ASD241 50 1 DEAD LOAD 1.00 17 TRANS EQ 0.52 69 GENERATED IBC TABLE7ASD241 51 1 DEAD LOAD 1.00 18 LONG EQ 0 52 70 GENERATED IBC TABLE7ASD241 52 1 DEAD LOAD 1.00 17 TRANS EQ 0.52 2 SNOW LOAD 0.75 71 GENERATED IBC TABLE7ASD241 53 1 DEAD LOAD 1 00 18 LONG EQ 0.52 2 SNOW LOAD 0.75 72 GENERATED IBC TABLE7ASD241 54 1 DEAD LOAD 1 00 17 TRANS EQ -0.52 73 GENERATED IBC TABLE7ASD241 55 1 DEAD LOAD 1.00 18 LONG EQ -0 52 74 GENERATED IBC TABLE7ASD241 56 1 DEAD LOAD 1.00 17 TRANS EQ -0.52 2 SNOW LOAD 0 75 75 GENERATED IBC TABLE7ASD241 57 1 DEAD LOAD 1 00 18 LONG EQ -0.52 2 SNOW LOAD 0 75 76 GENERATED IBC TABLE7ASD241 58 1 DEAD LOAD 0.60 3 UPLIFT 100 77 GENERATED IBC TABLE7ASD241 59 1 DEAD LOAD 0.60 4 DOWN 100 78 GENERATED IBC TABLE7ASD241 60 1 DEAD LOAD 0.60 5 UNBALANCED UPLIFT 1.00 79 GENERATED IBC TABLE7ASD241 61 1 DEAD LOAD 0.60 6 UNBALANCED DOWN 1.00 80 GENERATED IBC TABLE7ASD241 62 1 DEAD LOAD 0.60 - 7 BASE POS MOMENT-ZONE 1 1.00 81 GENERATED IBC TABLE7ASD241 63 1 DEAD LOAD 0.60 8 BASE POS MOMENT-ZONE 2 1 00 82 GENERATED IBC TABLE7ASD241 64 1 DEAD LOAD - 0 60 9 BASE POS MOMENT-ZONE 3 1.00 83 GENERATED IBC TABLE7ASD241 65 1 DEAD LOAD 0.60 10 BASE POS MOMENT-ZONE 4 1 00 84 GENERATED IBC TABLE7ASD241 66 1 DEAD LOAD 0.60 11 BASE POS MOMENT-ZONE 5 1 00 85 GENERATED IBC TABLE7ASD241 67 1 DEAD LOAD 0.60 12 BASE NEG MOMENT-ZONE 1 1.00 86 GENERATED IBC TABLE7ASD241 68 1 DEAD LOAD 0.60 13 BASE NEG MOMENT-ZONE 2 1.00 87 GENERATED IBC TABLE7ASD241 69 1 DEAD LOAD 0 60 14 BASE NEG MOMENT-ZONE 3 1.00 88 GENERATED IBC TABLE7ASD241 70 1 DEAD LOAD 0 60 Print Time/Date 15/05201515 09 STAAD.Pro V8i 20 07 05.15 Print Run 7 of 19 F2157 Job No Sheet No Rev T.B.D. Result Software licensed to Part Job Title SOUTHOLD LANDFILL Ref By Date15-May-15 Chd Client File Interior row.std Date/Time 15-May-2015 15 07 Combination Load Cases Cont... Comb. Combination L/C Name Primary Primary L/C Name Factor , 15 BASE NEG MOMENT-ZONE 4 1 00 89 GENERATED IBC TABLE7ASD241 71 1 DEAD LOAD 0.60 16 BASE NEG MOMENT-ZONE 5 1.00 90 GENERATED IBC TABLE7ASD241 72 1 DEAD LOAD 0.60 17 TRANS EQ 0.70 91 GENERATED IBC TABLE7ASD241 73 1, DEAD LOAD 0.60 18 LONG EQ 0.70 92 GENERATED IBC TABLE7ASD241 74 1 DEAD LOAD 0.60 17 TRANS EQ -0.70 _ 93 GENERATED IBC TABLE7ASD241 75 1 DEAD LOAD 0.60 18 LONG EQ -0 70 Beam Loads : 1 DEAD LOAD Beam Type Direction Fa Da Fb Db Ecc. (ft) (ft) 33 UNI Ibf/ft GY -16.000 - - - - 34 UNI Ibf/ft GY -16.000 - - - - 35 UNI Ibf/ft GY -16.000 - - - - 36 UNI Ibf/ft GY -16.000 - - - - 37 UNI Ibf/ft GY -16.000 - - - - 38 UNI Ibf/ft GY -16.000 - 39 UNI Ibf/ft GY -16.000 - - - - 40 UNI Ibf/ft GY -16.000 - - - - 41 UNI Ibf/ft GY -16.000 - - - - 42 UNI Ibf/ft GY -16.000 - - - - I 43 UNI Ibf/ft GY -16 000 - - - - 44 UNI Ibf/ft GY -16.000 - - - - 55 UNI Ibf/ft GY -16 000 - - - - 56 UNI., Ibf/ft GY -16.000 - - - - 57 UNI Ibf/ft GY -16.000 - - - - 58 UNI Ibf/ft GY -16 000 - - - -, 67 UNI Ibf/ft GY -16.000 - - - - 68 UNI Ibf/ft GY -16 000 - - - - 69 UNI Ibf/ft GY -16 000 - - - - 70 UNI Ibf/ft GY -16.000 - - - - Print Time/Date 15/05/201515'09 STAAD.Pro V8i 20 07.05 15 Print Run 8 of 19 Job No Sheet No Rev T.B.D. Result 1;i% Part Software licensed to Job Title SOUTHOLD LANDFILL Ref By Datcl5-May-15 Chd Client File Interior row std Date/Time 15-May-2015 15:07 1 Beam Loads : 2 SNOW LOAD Beam Type Direction Fa Da Fb Db Ecc. (ft) (ft) 33 UNI Ibf/ft GY -38.000 - - - - " 34 UNI Ibf/ft GY -38.000 - - - - ' 35 UNI Ibf/ft GY -38.000 - - - - 36 UNI Ibf/ft GY -38 000 - - - - 37 UNI Ibf/ft GY -38.000 - - - - 38 UNI Ibf/ft GY -38.000 - - - - 39 UNI Ibf/ft GY -38 000 - - - - 40 UNI Ibf/ft GY -38 000 - - - - 41 UNI Ibf/ft GY -38.000 - - - - - 42 UNI Ibf/ft GY -38.000 - - - - _ 43 UNI Ibf/ft GY -38 000 - - - - 44 UNI Ibf/ft GY -38.000 - - - - _ - 55 UNI Ibf/ft GY -38.000 - - - - 56 UNI Ibf/ft GY -38.000 - - - - 57 UNI Ibf/ft GY -38 000 - - - - 58 UNI Ibf/ft GY -38.000 - - - - 67 UNI Ibf/ft GY -38 000 - - - - _ 68 UNI Ibf/ft GY -38 000 - - - - 69 UNI Ibf/ft GY -38.000 - - - - 70 UNI Ibf/ft GY -38 000 - - - - Beam Loads : 3 UPLIFT Beam Type Direction Fa Da Fb Db Ecc. (ft) (ft) 33 UNI Ibf/ft Y 62.000 0 000 - 13.134 - ; UNI Ibf/ft Y 52.000 13.134 - 20.000 - 34 UNI Ibf/ft Y 52.000 0 000 - 6.268 - _UNI Ibf/ft Y 48.000 6.268 - 19 402 - _ - - UNI Ibf/ft Y 44 000 19.402 20.000 35 UNI Ibf/ft Y 44.000 0.000 - 12.536 - UNI lbf/ft Y 0.000 0.000 - 19.402 - UNI Ibf/ft Y 40.000 12.536 - 20.000 - 36 UNI Ibf/ft Y 62.000 0.000 - 13 134 - UNI Ibf/ft Y 52.000 13.134 - 20.000 - 37 UNI Ibf/ft Y 52.000 0.000 - 6 268 - UNI Ibf/ft Y 48.000 6.268 - 19.402 - UNI Ibf/ft Y 44.000 19.402 - 20 000 - 38 UNI Ibf/ft Y 44.000 0.000 - 12.536 - UNI Ibf/ft Y 0.000 0 000 - 19.402 - UNI Ibf/ft Y 40.000 12.536 - 20 000 - _ 39 UNI Ibf/ft Y 62.000 0.000 - 13.134 - UNI Ibf/ft Y 52.000 13.134 - 20 000 - ! 40 UNI Ibf/ft Y 52 000 0.000 - 6.268 - Print Time/Date.15/05/2015 15 09 STAAD.Pro V8i 20 07.05.15 Print Run 9 of 19 poo'N Job No Sheet No Rev T.B.D. Result Software licensed to Part Job Title SOUTHOLD LANDFILL Ref By Date1 5-May-15 Chd Client File Interior row.std Date/time 15-May-2015 15:07 I Beam Loads : 3 UPLIFT Cont... ' Beam Type Direction Fa Da Fb Db Ecc. (ft) (ft) 40 UNI Ibf/ft Y 48.000 6 268 - 19 402 - UNI Ibf/ft Y 44.000 19.402 - 20.000 - 41 UNI Ibf/ft Y 44.000 0.000 - 12.536 - UNI Ibf/ft Y 0.000 0 000 - 19.402 - UNI Ibf/ft Y 40.000 12.536 - 20.000 - 42 UNI Ibf/ft Y 62.000 0.000 - 13.134 - UNI Ibf/ft Y 52 000 13 134 - 20 000 - 43 UNI Ibf/ft Y 52.000 0.000 - 6.268 - UNI Ibf/ft Y 48.000 6.268 - 19.402 - UNI Ibf/ft Y 44 000 19.402 - 20.000 - 44 UNI Ibf/ft Y 44.000 0 000 - 12.536 - UNI Ibf/ft Y 0.000 0.000 - 19.402 - UNI Ibf/ft Y 40.000 12.536 - 20.000 - 55 UNI Ibf/ft Y 40 000 - - - - 56 UNI Ibf/ft Y 40.000 - - - - 57 UNI Ibf/ft Y 40.000 - - - - 58 UNI Ibf/ft Y 40.000 - - - - 67 UNI Ibf/ft Y 40.000 - - - - 68 UNI Ibf/ft Y 40 000 - - - - 69 UNI Ibf/ft Y 40.000 - - - - 70 UNI Ibf/ft Y 40.000 - - - - Beam Loads : 4 DOWN Beam Type Direction Fa Da Fb Db Ecc. (ft) (ft) 33 UNI Ibf/ft Y -65.000 0.000 - 13.134 - UNI Ibf/ft Y -46.000 13.134 - 20.000 - 34 UNI Ibf/ft Y -46.000 0.000 - 6.268 - UNI Ibf/ft Y -30.000 6.268 - 19.402 - UNI Ibf/ft Y -26.000 19 402 - 20.000 - 35 UNI Ibf/ft Y -26 000 0.000 - 12.536 - UNI Ibf/ft Y 0 000 0 000 - 19 402 - UNI Ibf/ft Y -22.000 12.536 - 20.000 - 36 UNI Ibf/ft Y -65.000 0 000 - 13 134 - UNI Ibf/ft Y -46 000 13.134 - 20.000 - 37 UNI Ibf/ft Y -46.000 0.000 - 6.268 - UNI Ibf/ft Y -30.000 6.268 - 19.402 - UNI Ibf/ft Y -26.000 19.402 - 20 000 ' - 38 UNI Ibf/ft Y -26.000 0 000 - 12 536 - UNI Ibf/ft Y 0 000 0.000 - 19.402 - UNI Ibf/ft Y -22.000 12 536 - 20.000 - 39 UNI Ibf/ft Y -65.000 0.000 - 13 134 - UNI Ibf/ft Y -46.000 13 134 - 20.000 - Print Time/Date'15/05/2015 15.09 STAAD.Pro V8i 20.07 05.15 Print Run 10 of 19 _`" Job No Sheet No Rev T.B.D. Result ilillv Part Software licensed to Job Tale SOUTHOLD LANDFILL Ref By Date1 5-May-15 Chd Client File Interior row.std Date/Time 15-May-2015 15.07 , 1 Beam Loads : 4 DOWN Cont... Beam Type Direction Fa Da Fb Db Ecc. (ft) (ft) 40 UNI Ibf/ft Y -46 000 0.000 - 6 268 - UNI Ibf/ft Y -30.000 6.268 - 19.402 - UNI Ibf/ft Y -26.000 19.402 - 20 000 - 41 UN! Ibf/ft Y -26.000 0.000 - , 12.536 - UNI Ibf/ft Y 0.000 0 000 - 19.402 - UNI Ibf/ft Y -22.000 12.536 - 20.000 - 42 UNI Ibf/ft Y -65 000 0.000 - 13.134 - UNI Ibf/ft Y -46.000 13.134 - 20.000 - 43 UNI Ibf/ft Y -46.000 0.000 - 6.268 - UNI Ibf/ft Y -30.000 6 268 - 19.402 - UNI Ibf/ft Y -26.000 19.402 - 20.000 - 44 UNI Ibf/ft Y -26.000 0.000 - 12 536 - UNI Ibf/ft Y 0.000 0.000 - 19.402 - UNI Ibf/ft Y -22.000 12.536 - 20.000 - 55 UNI Ibf/ft Y -22.000 - - - - 56 UNI Ibf/ft Y -22.000 - - - - 57 UNI Ibf/ft Y -22 000 - - - - 58 UNI Ibf/ft Y -22.000 - - - - 67 UNI Ibf/ft Y -22.000 - - - - 68 UNI Ibf/ft Y -22.000 - - - - 69 UNI Ibf/ft Y -22.000 - - - - 70 UNI Ibf/ft Y -22.000 - - - - Beam Loads : 5 UNBALANCED UPLIFT Beam Type Direction Fa Da Fb Db Ecc. (ft) (ft) 39 UNI Ibf/ft Y 26.000 0.000 - 13.134 - UNI Ibf/ft Y 22.000 13 134 - 20.000 - 40 UN! Ibf/ft Y 22.000 0.000 - 6.268 - UNI Ibf/ft Y 22.000 6.268 - 19 402 - UNI Ibf/ft Y 21.000 19.402 - 20 000 - 41 UNI Ibf/ft Y 21.000 0.000 - 12.536 - UNI Ibf/ft Y 0.000 0.000 - 19.402 - UNI lbf/ft Y 19.000 12 536 - 20.000 - 42 UNI Ibf/ft Y 26.000 0.000 - 13.134 - UNI Ibf/ft Y 22.000 13.134 - 20.000 - 43 UNI Ibf/ft Y 22.000 0.000 - 6.268 - UNI Ibf/ft Y 22.000 6.268 - 19.402 - UNI Ibf/ft Y 21.000 19.402 - 20.000 - 44 UNI Ibf/ft Y 21 000 0.000 - 12 536 - UNI Ibf/ft Y 0 000 0 000 - 19.402 - UNI Ibf/ft Y 19.000 12.536 - 20.000 - 57 UNI Ibf/ft Y 19 000 - - - - Print Time/Date 15/05201515 09 STAAD Pro V8i 20 07.05.15 Print Run 11 of 19 i - Job NoT.B.D. Result 1 Sheet No Rev I Software licensed to Part Job Title SOUTHOLD LANDFILL Ref By Dat€15-May-15 Chd Client File Interior row.std Date/Time 15-May-2015 15 07 Beam Loads : 5 UNBALANCED UPLIFT Cont... Beam Type Direction Fa Da Fb Db Ecc. r (ft) (ft) 58 UNI Ibf/ft Y 19 000 - - - - 69 UNI Ibf/ft Y 19.000 - - - - 70 UNI Ibf/ft Y 19.000 - - - - Beam Loads : 6 UNBALANCED DOWN Beam Type Direction Fa Da Fb Db Ecc. (ft) (ft) 39 UNI Ibf/ft Y -108 000 0.000 - 13.134 - UNI Ibf/ft Y -69.000 13.134 - 20.000 - 40 UNI Ibf/ft Y -69.000 0.000 - 6 268 - UNI Ibf/ft Y -37.000 6.268 - 19.402 - UNI Ibf/ft Y -31000 19.402 - 20.000 - 41 UNI Ibf/ft Y -31.000 0.000 - 12.536 - UNI Ibf/ft Y 0.000 0.000 - 19.402 - UNI Ibf/ft Y -28.000 12.536 - 20.000 - 42 UNI Ibf/ft Y -108.000 0.000 - 13.134 - UNI Ibf/ft Y -69 000 13.134 - 20.000 - 43 UNI Ibf/ft Y -69.000 0.000 - 6.268 - UNI Ibf/ft Y -37.000 6.268 - 19.402 - UNI Ibf/ft Y -31.000 19.402 - 20.000 - 44 UNI Ibf/ft Y -31.000 0.000 - 12 536 - UNI Ibf/ft Y 0.000 0.000 - 19.402 - UNI Ibf/ft Y -28.000 12.536 - 20.000 - 57 UNI Ibf/ft Y -28.000 - - - - 58 UNI Ibf/ft Y -28 000 - - - - ' 69 UNI Ibf/ft Y -28.000 - - - - 70 UNI Ibf/ft Y -28 000 - - - - Node Loads : 7 BASE POS MOMENT - ZONE 1 Node FX FY FZ MX MY ' MZ I (kip) (kip) (kip) (kip-ft) (kip-ft) (kip-ft) 8 - - - - - -0.867 16 - - - - - -0.867 24 - - - - - -0.867 32 - - - - - -0.867 40 - - - - - -0.867 48 - - - - - -0.867 49 - - - - - -0.867 50 - - - - - -0.867 51 - - - - - -0.867 52 - - - - - -0 867 53 - - - - - -0.867 Print Time/Date 15/05/201515 09 STAAD.Pro V8i 20 07.05.15 Print Run 12 of 19 v Job No Sheet No Rev T.B.D. Result - :Software licensed to Part Job Title SOUTHOLD LANDFILL Ref By Date15-May-15 Chd Client File Interior row std Date/rime 15-May-2015 15 07 1 Node Loads : 7 BASE POS MOMENT - ZONE 1 Cont... Node FX FY FZ MX MY MZ (kip) (kip) (kip) (kipft) (kipft) (kipft) 54 - - - - - -0.867 Node Loads : 8 BASE POS MOMENT - ZONE 2 Node FX FY FZ MX MY MZ (kip) (kip) (kip) (kipft) (kipft) (kipft) 8 - - - - - -0 684 16 - - - - - -0 684 24 - - - - - -0.684 32 - - - - - -0.684 40 - - - - - -0.684 41 - - - - - -0.684 48 - - - - - -0 684 50 - - - - - -0.684 51 - - - - - -0 684 52 - - - - - -0.684 53 - - - - - -0 684 54 - - - - - -0.684 Node Loads : 9 BASE POS MOMENT - ZONE 3 Node FX FY FZ MX MY MZ (kip) (kip) (kip) (kip'ft) (kipft) (kipft) , 8 - - - - - -0 776 16 - - - - - -0 776 ' 24 - - - - - -0 776 32 - - - - - -0 776 40 . - - - - - - -0.776 48 - - - - - -0.776 49 - - - - - -0 776 50 - - - - - -0 776 51 - - - - - -0 776 52 - - - - - -0.776 53 - - - - - -0.776 54 - - - - - -0.776 Print Time/Date 15/05/201515 09 STAAD.Pro V8i 20 07 05 15 Print Run 13 of 19 -—q Job No Sheet No Rev Part T.B.D. Result , 111._.. liji Software licensed to Job Title SOUTHOLD LANDFILL Ref By Date15-May-15 Chd Client File Interior row std Date/time 15-May-2015 15.07 Node Loads : 10 BASE POS MOMENT - ZONE 4 Node FX FY FZ MX MY MZ (kip) (kip) (kip) (lop-ft) (kip-ft) (kip ft) 8 - - - - - -0.684 16 - - - - - -0.684 24 - - - - - -0.684 32 - - - - - -0 684 40 - - - - - -0 684 48 - - - - - -0.684 49 - - - - - -0.684 50 - - - - - -0.684 51 - - - - - -0.684 52 - - - - - -0 684 53 - - - - - -0.684 54 - - - - - -0.684 Node Loads : 11 BASE POS MOMENT - ZONE 5 Node FX FY FZ MX MY MZ (kip) (kip) (kip) (kip'ft) (kip-ft) (kip ft) 8 - - - - - -0 684 16 - - - - - -0.684 24 - - - - - -0.684 32 - - - - - -0.684 40 - - - - - -0.684 1 i 48 - - - - - -0.684 49 - - - - - -0.684 50 - - - - - -0.684 51 - - - - - -0.684 - 52 - - - - - -0 684 53 - - - - - -0.684 54 - - - - - -0 684 Pnnt Time/Date 15/05/201515 09 STAAD Pro V8i 20 07.05 15 Print Run 14 of 19 Job No Sheet No Rev T.B.Q. Result jar.11.1114 Software licensed to Part r Job Title SOUTHOLD LANDFILL Ref ' By Date15-May-15 Chd Client Ale Interior row std Date/time 15-May-2015 15:07 Node Loads : 12 BASE NEG MOMENT - ZONE 1 Node FX FY FZ MX MY MZ (kip) (kip) (kip) (kip-ft) (kip'ft) (kip ft) 16 - - - - - 6.345 24 - - - - - 6.345 32 - - - - - 6.345 40 - - - - 6.345 48 - - - - - 6.345 49 - - - - - 6 345 50 - - - - - 6.345 51 - - - - - 6.345 52 - - - - - 6.345 53 - - - - - 6.345 54 - - - - - 6.345 55 - - - - - 6.345 Node Loads : 13 BASE NEG MOMENT - ZONE 2 Node FX FY FZ MX MY MZ (kip) (kip) (kip) (kip-ft) (kip-ft) (kip-ft) 8 - - - - - 4.016 16 - - - - - 4.016 24 - - - - - 4.016 32 - - - - - 4.016 40 - - - - - 4.016 48 - _ - - - 4016 49 - - 4016 50 - - - - - 4016 51 - - - - - 4016 52 - - - - - 4.016 53 - - - - - 4.016 54 - - - - - 4016 Print Time/Date 15/05/2015 15 09 STAAD.Pro V8i 20.07.05 15 Print Run 15 of 19 r Job No Sheet No Rev T.B.D. Result Software licensed to Part Job Title SOUTHOLD LANDFILL Ref By Date15-May-15 Chd Client File Interior row std Daternme 15-May-2015 15 07 Node Loads : 14 BASE NEG MOMENT - ZONE 3 Node FX FY FZ MX MY MZ (kip) (kip) (kip) (kipft) (kipft) (kipft) 8 - - - - - 2.100 16 - - - - - 2.100 24 - - - - - 2.100 32 - - - - - 2100 40 - - - - - 2.100 48 - - - - - 2.100 49 - - - - - 2100 50 - - - - - 2100 51 - - - - - 2.100 52 - - - - - 2.100 53 - - - - - 2100 54 - - - - - 2.100 Node Loads : 15 BASE NEG MOMENT - ZONE 4 Node FX FY FZ MX MY MZ (kip) (kip) (kip) (kipft) (kipft) (kipft) 16 - - - - - 2 054 24 - - - - - 2.054 32 - - - - - 2.054 40 - - - - - 2 054 48 - - - - - 2.054 49 - - - - - 2.054 50 - - - - - 2.054 51 - - - - - 2.054 52 - - - - - 2 054 53 - - - - - 2.054 54 - - - - - 2 054 55 - - - - - 2.054 Print Time/Date 15/05/201515 09 STAAD.Pro V8i 20 07.05 15 Print Run 16 of 19 Job No Sheet No Rev `; T.B.D. Result `Software licensed to Part Job Title SOUTHOLD LANDFILL Ref By Date15-May-15 Chd Client File Interior row.std Date/Time 15-May-2015 15.07 Node Loads : 16 BASE NEG MOMENT - ZONE 5 Node FX FY FZ MX MY MZ (kip) (kip) (kip) (kip-ft) (kip ft) (kip-ft) 8 - - - - - 1826 16 - - - - - 1826 24 - - - - - 1826 32 - - - - - 1.826 40 - - - - - 1826 48 - - - - - 1.826 49 - - - - - 1826 50 - - - - - 1826 51 - - - - - 1.826 52 - - - - - 1826 53 - - - - - 1.826 54 - - - - - 1.826 Node Loads : 17 TRANS EQ Node FX FY FZ MX MY MZ (kip) (kip) (kip) (kip ft) (kip-ft) (kip'ft) 5 0 055 - - - - - 6 0 055 - - - - - 13 0 055 - - - - - 14 0.055 - - - - - 21 0 055 - - - - - 22 0.055 - - - - - 29 0 055 - - - - - 30 0 055 - - - - - 37 0 055 - - - - - 38 0.055 - - - - - 45 0 055 - - - - - 46 0.055 - - - - - Print Time/Date 15/05/2015 15 09 STAAD Pro V8i 20.07.05 15 Print Run 17 of 19 Job No Sheet No Rev T.B.D. Result -. :`1 Software licensed to Part I l Job Title SOUTHOLD LANDFILL Ref By Date15-May-15 Chd Client File Interior row std Date/Time 15-May-2015 15:07 I Node Loads : 18 LONG EQ Node FX FY FZ MX MY MZ (kip) '(kip) (kip) (kip-ft) (kip-ft) (kip-ft) 5 - - 0.055 - - - 6 - - 0 055 - - - 13 - - 0.055 - - - 14 - - 0.055 - - - 21 - - 0.055 - - - 22 - - 0.055 - - - 29 - - 0.055 - - - - 30 - - 0.055 - - - 37 - - 0.055 - - - 38 - - 0.055 - - - 45 - - 0.055 - - -, 46 - - 0 055 - - - Node DisplacementSummary Node UC X Y Z Resultant rX rY rZ (in) (in) (in) (in) (rad) (rad) (rad) Max X 10 55-GENERATE 0.068 -0.178 -0.000 0.190 -0.000 -0.000 -0.009 Min X 10 76:GENERATE -0.045 0 109 -0 000 0.118 0.000 0.000 0.006 Max Y 10 76-GENERATE -0.045 0.109 -0 000 0.118 0.000 0 000 0.006 Min Y 9 57:GENERATE 0 068 -0.181 -0.000 0 194 0 000 0 000 0 010 Max Z 42 37•GENERATE 0.006 -0 017 0.012 0.022 0.000 -0 000 -0 001 Min Z 42 39:GENERATE 0 006 -0.017 -0.012 0.022 -0 000 0 000 -0.001 Max rX 10 37:GENERATE 0.012 -0.034 0.006 0.036 0.001 0.000 -0.002 Min rX 10 39:GENERATE 0 012 -0 034 -0.006 0.036 , -0.001 -0.000 -0.002 Max rY 12 37:GENERATE -0 002 0.005 0.002 0 006 0.001 0.000 -0.000 ' Min rY 12 39•GENERATE -0.002 0.005 -0 002 0.006 -0 001 -0.000 -0.000 Max rZ 9 57.GENERATE 0.068 -0 181 -0 000 0.194 0 000 0.000 0.010 Min rZ 10 55:GENERATE 0 068 -0 178 -0.000 0.190 -0.000 -0 000 -0.009 Max Rst 9 57:GENERATE 0 068 -0.181 -0 000 0.194 0.000 0.000 0.010 I _, Print Time/Date 15/05/201515 09 STAAD.Pro V8i 20.07 05.15 Print Run 18 of 19 lI Job No Sheet No Rev T.B.D. Result Software licensed to Part Job Title SOUTHOLD LANDFILL Ref By Date15-May-15 Chd Client File Interior row.std Date/Time 15-May-2015 15 07 Beam Force Detail Summary ! ' Sign convention as diagrams.-positive above line,negative below line except Fx where positive is compression.Distance d is given from beam end A Axial Shear Torsion Bending Beam UC d Fx Fy Fz Mx My Mz (ft) (kip) (kip) (kip) (kip ft) (kip-ft) (kip ft) Max Fx 75 57 GENERATE 0.000 3.711 0.675 0 000 -0.000 -0.000 0 783 Min Fx 15 76•GENERATE 0.000 -1.946 -0.118 0.001 -0.000 -0.002 -0 401 Max Fy 12 57:GENERATE 0 000 0 330 1.834 0.000 -0.000 -0.000 3.507 Min Fy 9 57•GENERATE 0.000 -0.305 -1.884 -0.000 -0.000 0.000 -0.164 Max Fz 33 20:GENERATE 20 000 -0.000 -0.507 0.185 0.000 0.000 0 000 Min Fz 33 20:GENERATE 0 000 -0.000 0.507 -0.185 0.000 0.000 0.000 Max Mx 10 39.GENERATE 0 000 0 002 -0.000 0.011 0.031 -0 016 -0 000 Min Mx 10 37:GENERATE 0.000 0.002 -0.000 -0 011 -0.031 0.016 -0.000 Max My 7 37:GENERATE 0.000 0.306 0.001 -0.114 0.000 0.123 0.003 Min My 33 20•GENERATE 10 000 -0.000 0.000 0.000 0 000 -0.923 -2.537 Max Mz 9 57:GENERATE 1.949 -0.305 -1.884 -0.000 -0.000 -0.000 3.507 Min Mz 39 57:GENERATE 10.000 -0.000 -0.034 -0 000 0.000 -0 761 -5.796 Reaction Summary Horizontal Vertical Horizontal Moment Node LIC FX FY FZ MX MY MZ (kip) (kip), (kip) (kip-ft) (kip-ft) (kip ft) Max FX 53 22:GENERATE 1.339 -1.030 0 001 0.001 -0.000 -1.555 Min FX 53 77:GENERATE -1.163 1 838 -0.000 -0.000 0.000 1.351 Max FY 53 57.GENERATE -0.675 3.711 0.000 0.000 -0.000 0 783 Min FY 16 76•GENERATE 0 118 -1.946 0.001 0.002 -0.000 -0.401 Max FZ 8 39:GENERATE -0.001 0.333 0.114 0.123 -0.000 0.003 Min FZ 8 37:GENERATE -0.001 0.306 -0.114 -0.123 0.000 0.003 I Max MX 8 39.GENERATE -0.001 0.333 0.114 0.123 -0.000 0.003 Min MX 8 37:GENERATE -0 001 0.306 -0.114 -0.123 0.000 0.003 Max MY 53 39.GENERATE 0.001 0.640 -0.022 -0.025 0.000 -0 002 Min MY 53 37:GENERATE 0 002 0 640 0.022 0.025 -0.000 -0.002 Max MZ 53 77•GENERATE -1 163 1 838 -0.000 -0.000 0.000 1.351 Min MZ 54 31:GENERATE 0 637 0.552 -0.000 -0 000 0.000 -7.084 Print Time/Date 15/05/2015 15 09 STAAD.Pro V8i 20.07.05.15 Print Run 19 of 19 POST-BEAM END FORCES(SUMMARY) , Post 4 LOAD COMBO NODE Fx(kip) Fy(kip) Fz(kip) Mx(k-ft) My(k-ft) Mz(k-ft) I Max Fx - 73 57 GENERATED IBC T 51 2.571 0.274 0 0 0 0.318 Min Fx 31 76 GENERATED IBC T 32 -1.402 -0 09 0 0 0 -0.306 Max Fy 73 77 GENERATED IBC T 51 1.099 0.572 0 0 0 0.664 Min Fy 73 22 GENERATED IBC T 51 -0.64 -1.027 0 0 0 -1.192 Max Fz 73 39 GENERATED IBC T 51 0.64 -0 001 0.05 0 -0.058 -0.002 Min Fz 73 37 GENERATED IBC T 51 0.64 -0.001 -0.05 0 0.058 -0.002 - Max Mx 73 37 GENERATED IBC T 51 0.64 -0.001 -0.05 0 0 058 -0.002 Min Mx 73 39 GENERATED IBC T 51 0.64 -0.001 0.05 0 -0.058 -0.002 Max My 31 37 GENERATED IBC T 32 0.64 0.001 -0.027 0 0.092 0.005 1 Min My 31 39 GENERATED IBC T 32 0 64 0.001 0.027 0 -0.092 0.005 Max Mz 73 77 GENERATED IBC T 51 1.099 0.572 0 0 0 0 664 Min Mz 73 22 GENERATED IBC T 51 -0.64 -1027 0 0 0 -1.192 i - TOP CHORD-BEAM END FORCES(SUMMARY)- ' TOP-CHORD 4 LOAD COMBO NODE Fx(kip) Fy(kip) Fz(kip) Mx(k-ft) My(k-ft) Mz(k-ft) Max Fx 28 54 GENERATED IBC T 29 0.703 0.283 0 0 0 0.533 Min Fx 27 55 GENERATED IBC T 28 -0.521 -1.211 0 0 0 -0.009 Max Fy 28 57 GENERATED IBC T 29 0.317 1.245 0 0 0 2.398 Min Fy 25 57 GENERATED IBC T 25 -0 305 -1.265 0 0 0 -0.067 Max Fz 27 39 GENERATED IBC T 28 -0.108 -0 301 0.007 -0.002 -0.003 0 Min Fz 27 37 GENERATED IBC T 28 -0.108 -0.301 -0.007 0.002 0.003 0 Max Mx 26 37 GENERATED IBC T 27 0.002 0 0.001 0.005 -0.002 0 Min Mx 26 39 GENERATED IBC T 27 0.002 0 -0.001 -0.005 0 002 0 Max My 28 37 GENERATED IBC T 29 0.111 0.301 -0.006 0 002 0 01 0.586 Min My 28 39 GENERATED IBC T 29 0.111 0.301 0.006 -0.002 -0.01 0.586 Max Mz 25 57 GENERATED IBC T 29 -0.305 -1.265 0 0 0 2.398 Min Mz 27 76 GENERATED IBC T 30 0.461 0 713 0 0 0 -1.366 /-f71 JOB TITLE SOUTHOLD LANDFILL �...,_. JOB NO.T.B D SHEET NO RBI SOLAR CALCULATED BY xxx DATE 5/15/2015 CHECKED BY DATE Purlin Design and Analysis Zone: Zone 4 Mechanical Properties Fy=Yeild Strength 50.0 ksi E=Modulus of Elasticity 29000 0 ksi Ob-Bending Factor 1.67 Os-Comp.Factor 1.8 Cm for simple beam 1 R-for Simple Span 0.65 ,,,- Y.,-.7.-7----,`,---,B.77,,,-lj�' _-,' : .'•. 7"Z 16 GA ' ''',',-p.',,<-, -.5, Ir: _'hew u ;! B1 2125 A B2 2.375 �' >=; t 0.0625 _? `_ F, y km IL _, R 0.185 -'• =7,_1_,-,,,,,T2.--; , _I 7w I..,-71 d 0 911 _ r _ Solar Purlin I , Section Wt Ib/ft Area(in`) S.Paa Sonog Ix V.(kips) Me(k.in) Pa(kips) 7"Z 16 GA 2.595 0 545 1 479 1.477 5.463 2.695 46.64 6.161 Ls Span 20.0 ft Design Forces b,ri=Tributary Width 3.28 ft Mr,,ax W"bb,"L2/8 38.09 kip.in wp Purim wt. 0.79 psf Vme%W"b,„*L/2 0.63 kips , whi=Panels wt 2.80 psf Rmex Vmax 0.63 kips wh9 Collateral Load 0.00 psf Flexural Stress,Check-Flexure about x-x WDL=E(wp+wPI+wh9) 3.59 psf Flexure Check x-x PASS WL=Snow(Live)Load 11.48 psf Shear Check x-x PASS Ww Wmd Load 9 51 psf Ww Wmd Load UPLIFT 13.30 psf Check Uplift Wind Deflection Check Mmex(Ww WDL)`b.,*L`/8 19.12 kip.in Sact 5/384*(woL+WL)•b„•L"/(E"I,) 1.44 in Mn R"Sanaa Fy 48.00 kip.in ' ball L/120 2 00 in Maii=M,,JQbb 28.74 kip.in OK OK DL+WL+LL Combination Pax x2"E"Ix/(KL)2 I 27.17 k I aX 1-(S2."P/Pex) 1 Eq.6 53 C,=P/Pe+C,.M/(ax Me) 0 816607 Eq.6.54 C2=P/Pe+M/(Me) 0.816607 Eq.6 54 if(P/Pa<=0.15,C2,C1) 0.816607 OK Max.Stress Ratio= I 0.816607) STEEL BEAM AND COLUMN ANALYSIS/CODE CHECK Stress Code Check Per AISC 13th Edition Manual(ASD) For W,S,M,and HP Shapes Project Name. SOUTHOLD LANDFILL Client. SunEdison Project No.: T.B.D. Prep By: xxx I Date. 5/15/2015 Input Data: Post 4 Member Size: Member Properties: Y Select: W6x8.5 A=_ 2 52 in"2 I d= 5.830 in. j 4. tf=0 195 Member Loadin s: tw=_0 170 _in — P= 0.64 kips bf=_3 940 in Mx=— 1 19 _ft-kips tf=_ 0.195 _in. My= 0.00 ft-kips k= 0.445 in d=5 83 — —•—•— —•-X Ix= 14.90 in^4 Design Parameters: Sx= 5.10 in"3 > ( tw=0.17 Fy=_ 50.00—ksi rx= 2 43 in i — Kx= 1.20 Zx=i 5 73 m."3 I bf=3 94 Ky= 1.20 _ Iy= + 1.99 in^4 Lx=_ 3.410 ft Sy= 1 01 in^3 W6x8.5 Section Ly= 3410 _ft ry= 089 in Lb= 3.410 — ft Zy= 1.56 m."3 Sha.e Factors: Flex.Type= Single J= 0.033 m^4 SFx= 1 12 Cb= 1.67 Cw= 15 8 in."6 SFy= 1 54 Results: For Axial Corn ression: For X-axis Bending:_ For Y-axis Bending:_ Kx*Lx/rx= 20.21 Lp= 3 14 ft. fby= 0 00 ksi Ky*Ly/ry= 55 17 Lr= 9.47 ft Fby= 44 63 ksi Fe= 94.03rts= 1.05 Mry= 3 76 ft-kips fa= 0.25 _ksi fbx= 2.80 ksi Fa= 23.97 ksi Fbx= 32.83 ksi Pa= 60.39 kips Mrx= 13 95 ft-kips Nodal Lat.Brcq Requirements: Nodal Lat.Brcq Requirements: i Pbr= 0.01 kips Pbr 0.05 Requirements: f3br= 0.25 kip/in Or= 1.24 11 kip/in Stress Ratio: S R.= 0.091 Eqn.H1-lb < S R.5 1,Member is adequate for loading Comments. • • 5/15/2015 Z\Engineering Projects\RBI Solar\SOUTHOLD,NY\ Page 2 3 08 PM Engineering Request-SunEdison-Southold LANDFILL NY-2015-5-14(20 degrees) of 5 Top,Chord`Design;.-Compression-Member, ' Input Data I ;.' TOP CH0111)2 Member Section 4x4x14ga A=Tube Width 4 in Yi B= Tube Length 4 in '"' _ R=Corner Inner Radius 0.09375 in — t=Thickness 0.083 in i KLx=Buckling around x-x 1.95 ft 5- -------.4--------4-2(b B KLy=Buckling around y-y 3.9 ft I 4 E=Modulus of Elasticity 29500 ksi _ I Fy=Yield Stress 50 ksi i G=Shear Modulus 11300 ksi I.. Yj • 0 Calculated Parameter" - IV- , AOplied;Forces 1-Properties of 90°corner M 2.398 kip.ft r=R+t/2, Centerline of Dimension 0.135 in P 0.00001 kips u=it.r/2,Arc Length 0.212 in c=0.637 r Distance of c.g.from center 0.086 in 2-Flat widths of flanges and webs Flat width of Dim.a=A-(2 r+t) 3.6465 in Flat width of Dim b=B-(2 r+t) 3.6465 in ' _Calculation of IX " Element L, Length(in) Y, Distance to the center(in) L xY2 IX Flanges 2.a 7 293 B/2-t/2 1 959 27 974 0.000 Web 2.b 7.293 0 0.000 0.000 8.081 Corners 4.0 0.850 b/2+c 1.909 3 098 0.000 Sum 15.436 3.868 31 072 8 081 - . "- . " Calculation of I,, - , Element L, Length(in) X, Distance to the center(in) L x X2 ly' Flanges 2.a 7.293 0 0 000 0.000 8.081 Web 2.b 7.293 A/2-t/2 1 959 27.974 0.000 Corners 4 u 0.850 a/2+c 1.909 3.098 0.000 I_ Sum 15.436 3.868 31.072 8.081 - , - - - . ,Seetion,Properties - . , , A L x t 1.2812 in lx t x(L x Y2+Ix) 3.2497 in" lY t x(L x X2+ly') 3.2497 in" S= lx/(B/2) 1.6249 in' SY l./(A/2) 1.6249 ' in' r, (Ix/A)°5 1.5927 in ry (ly/A)°5 1.5927 in t_ . _ _, ,, NoniinaLBUckling StresS" KL,frx 14 69 KLyiry 29 38 KL/r ' 29.38 . - F. 7[2.E/(KL/r)2 337.19 ksi kc (Fy/Fe)u 5 0 39 Fn 46.99 ksi 1 Effective Area effective width of compression flange w/t=a/t 43.93 1 052/(k)05 x(wit)x(F,JE)9 6 0.92 P (1-022/20/k 0.83 ae 3.01 in I. effective widthof web element w/t=bit 43.93 A, 1 052/(k)°5 x(w/t)x(FriE)°6 0 92 P (1-0.22/k)/A, 0.83 be 3.01 in , ..2.; All0WableAxial,l-iiad , .:.';, '-2:, -,2''*2 --, Ae Ae=A-2 x t x Ra-ae)+(b-be)] 1 07 in2 Pn Pn=A e x Fn 5028 kips r/e 1.80 Pa=Pn/r/c 27.93 kips 2--,,-Chetk COniPieS-SiOn;StreSSesF . , Loads from Wind'? Cbl Cb1=(P/Re) 0.00 NO Allowable Stress Unity I 1 0.00 Section is OK --"';-,:'. •,..-. i., '''' ..:, .2'1, .. '-': "'''',,:---;-,f,,!-,,- coiriputiOgofttlx- . .,''' By using the effective width of compression flange and assuming ..._i the web is fully effective,the neutral axis can be located as follow. Element L, Length(in) y, Distance to top fiber(in) L y L y2 C. Flanges ae 3 011 t/2 0.042 0.125 0.005 Web 2 b' 7.293 B/2 2.000 14.586 29.172 C Corners 2.0 0.425 c+t/2 ,0.128 0.054 0.007 T. Flanges ae 3 011 B4/2 3 959 11 917 47 175 T.Corners 2 u 0 425 B-c-t/2 3.872 1 645 6.372 Sum 14 164 10.000 28 328 82.731 yeg= L y/L 2.000 Z=R+t 0 177 in ' ; The max stress of 50 ksi ocurs in the compression flange as assumed in the calculation " .� , ,. Check the,effectiy_eness of theWeb— ,: -- ,_ : ;e _ _ ' - - ff (Ycg Z)Fy/ycg 45 58 ksi f2 -(B-Ycg-Z)Fy/ycg -45 58 ksi W f2fff ' -1.00 k 4+2(1-y)3+2(1-y) 24.00 h/t be/t 43 93 X 1 0521(k)°5 x(h/t)x(f1/E)3 5 0.37 P (1-022/X)/?. 1.10 be 3 65 in 13.1 be/(3-W) 0.91 in b2 1 82 in bf+b2 2.73 in 2(web , 2(1112)(b)3 8.08 Ino i__ E(Ly2) 82 73 in4 (-)(EL)(Ycg)2 56.66 in4 I'x 3416 in4 1,=I',t 2.83 Ino Sex Ix/Ycg 1 42 in3 Cb=1.0 for combined axial load and bending moment j 2b2d2t/(b+d) 4.02 in4 Sf fullSx 1.62 in4 1_, 0.36Cba.(E I.G.j)05/(Fy. Sf) 76.60 ft Fe Cbn.(E I.G.j)Ub/(L.Sf) , 5455.60 ksi . .,,; _,., ._. _-4 _ Alloikable-Bending:Moment-; ,F_ - w - Max 5.906 kip ft nb 1 670 Ma=Mnx/ab 3 537 kip ft - - - ', 'Check-Stresses_ , v , , ., . Cmx 0.6-0.4*Mf/M2 0.60 Loads from Windt Cbl (P/Pa)+(Cmx Mx/Ma) 0.41 NO Cb2 (P/Pa)+(Mx/Ma) 0.68 Allowable Stress Unity I 1 Cb If((P/Pa)<=0.15,Cb2,Cbf) 0 68 Section is OK I 1 AJobFroi7 No Sheet No Rev T.B.D. Reaction Software licensed to Part Job Title SOUTHOLD LANDFILL Ref By Date15-May-15 Chd Client File Interior row.std DatelTime 15-May-2015 15.07_ Reaction Summary . Horizontal Vertical Horizontal Moment Node UC FX FY FZ MX MY MZ (kip) (kip) (kip) (kirft) (kip"ft) (kip'ft) . Max FX 51 22:GENERATE 1.027 -0.640 -0.000 -0.000 0.000 -1.192 Min FX 51 77 GENERATE -0.572 1.099 -0 000 -0 000 0.000 0.664 Max FY 51 57.GENERATE -0.274 2.571 -0.000 -0.000 0 000 0 318 Min FY 32 76:GENERATE 0.090 -1.402 0 000 0.000 0.000 -0 306 Max FZ 51 39:GENERATE 0.001 0.640 0.050 0.058 -0.000 -0.002 Min FZ 51 37:GENERATE 0 001 0.640 -0.050 -0.058 0.000 -0 002_ Max MX 32 39•GENERATE -0.001 0.640 0.027 0.092 -0.000 0.005 Min MX 32 37.GENERATE -0.001 0.640 -0.027 -0.092 0.000 0.005_ Max MY 51 37.GENERATE 0.001 0.640 -0.050 -0.058 0.000 -0.002 Min MY 51 39:GENERATE 0 001 0 640 0.050 0 058 -0.000 -0.002 Max MZ 32 26 GENERATE -0.001 0.640 0 000 0.000 -0.000 0.872 Min MZ 51 31:GENERATE 0 001 0.640 0.000 0.000 -0 000 -6.346 i I Print Time/Date 15/05/201515.10 STAAD Pro V8120 07 05 15 Print Run 1 of 1 DUAL POST BALLAST DESIGN PROJECT NAME:Southold Landfill DATE: 5/14/2015 LOCATION:Cutchogue,NY ENGINEER: NDA PROJECT NO.:153146 - Zone: North Rows @ 16.7ft TRIAL Worst Casring d Ballabi from Edge)8I 1 Post W8x10 ft Governing Load Combination 1176 Il Length(N-5) 9.5 ft 1 2 Width(E-W) 3.67 ft Axial Force -1.66 -2.443 kips Footing Depth 2 ft Moment -1.84 -0.476 k-ft Depth Below Grade 0 ft Shear 1.59 0.14 kips Concrete Strength(f'c) 3 ksi Edge Length 175 1.75 ft Soil Density(pcf) 110 pcf Coeff Of Friction 0 35 Rebar Clearance(in) 3 in Allowable Bearing 3 ksf Volume(ft53) 69 73 Conc.Wt 150 pcf - Section Modulus 15 04 in3 - Sliding FS. 1.5 Wt of Footing 10 46 kips Passive Pressure 0 kips Lateral Bearing Pressure 0.15 ksf/ft STABILITY CHECK ® 0 ..___C-:),) 0) w.vrel Sliding Resistance 2.224775 kips F S= 1.29 Av.'.I Pass.Press.+[Conc.Wt.+ Aum Axial Force]•Coef.Friction O .8�FoofiNa (Duo.. Post) i — D elyilas344. W Leue,TH Uplift F S= 8.74 77 Footing weight/Uplift due to wind Over Turning: (+)Resisting Moment(-)Overturning Moment A B Moment Due to Axial Load -2184 -1714 k-ft Moment Due to Horizontal Load -3.45 3.45 k-ft Applied Moment -2 32 2 32 k-ft Moment Resisted By Footing Wt. 49 68 49.68 k-ft Moment Resisted By Soil Wt. 0.00 0 00 k-ft ,- , M,=wnaSum= 4968 5545 Moverturning Sum= -27 61 -17.14 F S= 1.80 (Overturning at Point A Governs) Minimum Reinforcing Mu(transverse) 4.66 ft-kips Moment at critical section for flexure(Transverse) p(row) 0 000021 As(req'd) 0.049 in2 Mu(longitudinal) 12 59 ft-kips Moment at critical section for flexure(Longitudinal) p(row) 0.000056 As(read) 0 051 in2 As(min)-Longitudinal 1.90 in2 Governs As(min)=0018bh As(min)-Transverse 492 in2 Governs USE I 48 #5's Longitudinal(T&B) 2.48 in2 > 190 in2 OKI Or(5)#4's T&B #5's Transverse(T&B) 4.96 in2 > 4.92 in2 OKI i DUAL POST BALLAST DESIGN PROJECT NAME:Southold Landfill DATE: 5/14/2015 LOCATION:Cutchogue,NY ENGINEER: NDA PROJECT NO.:153146 Zone: North Rows @ 16.7ft TRIAL (3rd Ballast from Edge) Post W8x10 ft Governing Load Combination#76 Length(N-S) 9 5 ft 1 2 Width(E-W) 3.67 ft Axial Force -1.33 -1.985 kips Footing Depth 2 ft Moment -154 -0 396 k-ft Depth Below Grade 0 ft Shear 1.32 0 116 kips Concrete Strength(fc) 3 ksi Edge Length 1.75 175 ft Soil Density(pd) 110 pcf Coeff.Of Friction 0.35 Rebar Clearance(in) 3m Allowable Bearing 3 ksf Volume(ft^3) 69 73 Conc Wt. 150 pcf Section Modulus 15.04 in' Sliding F.S. 1.5 Wt.of Footing 10 46 kips Lateral Bearing Pressure 0 15 ksf/ft Passive Pressure 0 kips STABILITY CHECK © 0 ....___ :-.).) 60 a.a.R ia.,.e Sliding Resistance 2.499875 kips F.5= 1.74 Asim."� N.J. Pass.Press+[Conc Wt + Axial Force]•Coef.Friction wawa 4 A .at-- F.0+,.. (p.,_(p.,_ Post) JJi .. .. I1 Uplift F S= 9.84 a L.Emant ^. Footing weight/Uplift due to wind Over Turning: (+)Resisting Moment(-)Overturning Moment A B Moment Due to Axial Load -17 71 -13.80 k-ft Moment Due to Horizontal Load -2 88 2 88 k-ft Applied Moment -1.93 1.93 k-ft Moment Resisted By Footing Wt 49 68 49.68 k-ft Moment Resisted By Soil Wt 0 00 0.00 k-ft M,,,,,,s Sum= 49.68 54.49 Mo„.„,R„i„s Sum= -22 52 -13 80 F.S= 2.21 (Overturning at Point A Governs) Minimum Reinforcing Mu(transverse) 4 79 ft-kips Moment at critical section for flexure(Transverse) p(row) 0 000021 As(req'd) 0.051 in2 Mu(longitudinal) 12 94 ft-kips Moment at critical section for flexure(Longitudinal) p(row) 0.000057 As(req'd) 0 053 in2 As(min)-Longitudinal 1.90 in2 Governs As(min)=.0018bh As(min)-Transverse 492 in2 Governs USE 4 #5's Longitudinal(T&B) 2.48 in2 > 190 int OKI Or(5)#4's T&B 8 #5's Transverse(T&B) 4.96 m2 > 4.92 in2 OKI � ����W Job No Sheet No Rev A F �' RBI SOLAR 411110 Software licensed to Rough Brothers Part T.B.D. 1 Job Title SOUTHOLD LANDFILL Ref By Date15-May-15 Chd Client F1e North Row std Date/rme 18-May-2015 08.59 X=0075 kIp Y=-1326 kIp . Z=-0.002 kip MX=-0 001 kip-ft 'O NY=0000 kip-ft MZ=-0.256 kip-ft C=0 140 kip „,.,..1-0-\62.>„..„--,, Y=-2443 kip +q \ `• Z=0.002 kip \ MX=0 002 kip-ft \::.‘„-\„..._ MY=-0.000 kip-ft X=0853 kip - \\ N. Z=-0476 kip-ft X=0116 kip Y=-0,905 kip \\ \ `\ • ,'0, Y=•1.985 kip Z=-0.001 kip \ '\ •1‘`., • ,. Z=0000 kip MX=-0 001 kip-ft `\ -t� MX=0.000 kip-ft • MY=0000 kip-ft `\ °,, i MY=0000 khp-ft NZ=-0 990 kipdt i"°\ MZ=-0.386 kip-ft -'� \ X=0.112kipX=1.588 kip \\ \\\ Y=•1.899 kipY=-1660 kip \ 2=0.000kip2=0002 kip '\ \\ "73 MX=0000 kip-ft M%=0 002 k1p•tt \\ �`u \ MY=0.000 kip-ft MY=-0.000 hip•ft `\ O / \\\ MZ=-0.382 kip-ft MZ=-1841 kip-ft _ \\ ce\ ° \ \ =-1 899 0000hiip °�' \ \ \°\ =0000 kip Y=1.3332kk1p �'\ \� \\ X=0.000 kip-ft o iu N\ Y=0 000 lop-ft ft Z=-0000 kip \ \ \b \ Z=-0.382kp-ft MX=•0 000 kip-ft °. - \.1 \ MY=0000 hip-ft `\. ,'o MZ=-1.536 kip-ft \° o • N•\ =-00.94 kip =0.00 kip �� ,\ \ \ =0.000 kip X=1.273 kip \\ \ \� 'u' \b\ Y 0 000 kip-ft Y=-1.270 kip \ Z=-0000 kip \ \\ .ti• l �\ Z=-0.191 kip•ft MX=•0 000 kip-ft \\. o� \l .\ MY=0000kip•t • a '\ pa=-1 478 kip-ft -0' X=1 273 kip • \•‘ N. \ °, Y=•1.270 kip \ `\ Z=-0000 kip _\ N. \`o, T MX=-0.000 hip-ft \ �\ cX MY=0 000 kip-ft \\ °` MZ=-1 478 kip-ft \ �� d Load 76 X=0637 kip °`%"; Y=-0635 kip 5=-0.000 kip MX=-0 000 kip-ft MY=0.000 kip-ft 1145=-0.739 kip-ft LC 76 Print Time/Date 18/05/201515 11 STAAD.Pro V8i(SELECTseries 1)20.07 06 34 Print Run 1 of 1 DUAL POST BALLAST DESIGN PROJECT NAME:Southold Landfill DATE: 5/14/2015 LOCATION:Cutchogue,NY ENGINEER: NDA PROJECT NO.:153146 Zone: South Rows @ 16.7ft ' TRIAL Post W8x10 ft Governing Load Combination 876 Length(N-S) 95 ft 1 2 Width(E-W) 325 ft Axial Force -L33 -1.981 kips Footing Depth 2 ft Moment -1.53 -0.396 k-ft Depth Below Grade 0 ft Shear 1.32 0116 kips Concrete Strength(f'c) 3 ksi Edge Length 1.75 175 ft Soil Density(pcf) 110 pcf Coeff Of Friction 0.35 Rebar Clearance(in) 3 in Allowable Bearing 3 ksf Volume(ft^3) 61.75 Conc Wt 150 pcf Section Modulus 15.04 in3 Sliding F.S. 15 Wt of Footing 9.26 kips Passive Pressure 0 kips Lateral Bearing Pressure 0.15 ksf/ft STABILITY CHECK ® 2[] ...._ -:;") 60 Ol.AWr 14.0.11 Sliding Resistance 2.083375 kips F 5.= 1.45 AMA- 1 AIDA Pass.Press+[Conc Wt.+ Axial Force]"Coef Friction was."4 Foo+,Na ' .8. _ (DVAe Post) ♦♦i 'LIT—hitela) J Uplift F S.= 8 95 UAW J en1ETH Footing weight/Uplift due to wind Over Turning:(+)Resisting Moment(-)Overturning Moment A B Moment Due to Axial Load -17 68 -13 77 k-ft Moment Due to Horizontal Load -2 87 2 87 k-ft Applied Moment -1.93 1 93 k-ft Moment Resisted By Footing Wt. 44 00 44.00 k-ft Moment Resisted By Soil Wt. 0.00 000 k-ft M„s,gi„gSum= 4400 48.80 M0 ,3 r me Sum= -22 48 -13 77 F S= 1.96 (Overturning at Point A Governs) I Minimum Reinforcing ' Mu(transverse) 3 62 ft-kips Moment at critical section for flexure(Transverse) p(row) 0 000016 As(req'd) 0 038 m2 Mu(longitudinal) 1131 ft-kips Moment at critical section for flexure(Longitudinal) p(row) 0.000050 As(req'd) 0041 in2 As(min)-Longitudinal 1.68 n2 Governs As(min)=.0018bh As(min)-Transverse 492 in2 Governs USE 3 #5's Longitudinal(T&B) 1.86 in2 > 168 in2 OKI Or(4)#4's T&B 8 #5's Transverse(T&B) 4.961112 > 4 92 in2 OKI _ o Job No Sheet No Rev ��' T.B.D. 1 RBI SOLAR Software licensed to Rough Brothers Part Job Title SOUTHOLD LANDFILL Ref By Date15-May-15 Chd Client File South Row std Date/Time 18-May-2015 08:59 x=0.070 kip Y=-1224 kip b Z=-0002 kip 6' MX=•0.001 kip-ft ' X=0.116 kip ti 1,\ MY=0 000 klp-ft 'Z= =-1,981 kip •'II \ \��MZ=-0238 k1� Z=0002 kip �°, Mt - ` \ MX=0 002 klp•ft o ®® '4'\`� \\� MY=-0.000 kip-ft 7.- ' `\� \ Z=-0386 kip-ft N. •,\ ° N `�\o\ ,.os k=0.103 kip \ Y=-1.725 kip `'‘\ \\ '4 i �� Z=0000 kip �� MX=0.000 kip-fl %=0785 ki \\\ \ \\ MY=0 000 kip-ft Y=•0832 kfp b .-? °�\ �\ \ MZ=-0351 kip-ft Z=-0.001 kip /b.. \\ �o MX=-0 001 kip-ft �`-� MY=0 000 kip-ft NN \ \ X=0 088 kip MZ=-0923 kip-ft \ ' io\i. I Y=01000 kip \4 o\� Z=0000 kip `\\ `�b` MX=0.000 kip-ft \ \ MY=0.000 kip-ft X=1320 kip v ,4 \ �\ \\ MZ=-0333 kiP-ft Y=-1329 kip b \ Z=0.002 kip •\ ''� \o MX=0.002 kip-ft \\ \ \ ,'b` �C=0.097 kip MV=-0000 kip-ft �o \ Y=-1.608 kip MZ=•1.533 kip-ft \\,\ \�\O ,a \\ Z=0000 kip \� • MX=0.000 lop-ft X=1.174 kip \� ,�� \ \\\ MY=0.000 kip-ft Y=-1.145 kip ` A 'N MZ=•0331 kip-ft Z=-0.000 kip b '\ '\ \\\ MX=•0000 kip-ft /411 �\ \2‘, \o MY=-0000 kip-ft \ \ \� o X=0049 kip rAZ=-1362 kip-ft �\ �b ,0 Y=•0804 kip \� .y , Z=0.000 kip '�: . •\\ \ MX=0.000 kip-ft X=1.112 kip � \ 'O `\\ MY=0.000 kIp-ft Y=-1.069 kip o /o ��\ \\\ \ MZ=-0166 kip-ft Z=-0000kip \\ •., \'b MX=-0.000 kip-ft 70\ '\ MY=0.000 kip-ft ddZ=-1291 kip-It \\ N. \ \'°}�� /; y X=1106 kip mob,/ -4( Y=-1 062 kip Z=-0000 kIp '� MX=-0 000 kip-ft / �"'J Load 76 MY=0.000 kip-ft MZ=-1 285 kip-ft X=0.553 kip Y=-0.531 kip 0=-0 000 kip MX=-0.000 kip-ft MY=0 000 kip-ft JAZ=-0 642 kip-ft LC 76 Print Time/Date 18/05/2015 15 21 STAAD Pro V81(SELECTseries 1)20.07.06.34 Print Run 1 of 1 DUAL POST BALLAST DESIGN PROJECT NAME:Southold Landfill DATE: 5/14/2015 LOCATION:Cutchogue,NY ENGINEER: NDA PROJECT NO.:153146 Zone: interior Rows @ 20.Oft TRIAL Post W8x10 ft Governing Load Combination#76 Length(N-S) 9.5 ft 1 2 Width(E-W) 2.42 ft Axial Force -090 -1.402 kips Footing Depth 2 ft Moment -1.19 -0.306 k-ft Depth Below Grade 0 ft Shear 103 0.09 kips Concrete Strength(f'c) 3 ksi Edge Length 1.75 1.75 ft Soil Density(pcf) 110 pcf Coeff.Of Friction 0.35 Rebar Clearance(in) 3 in Allowable Bearing 3 ksf Volume(ft^3) 45 98 Conc.Wt 150 pcf Section Modulus 15.04 in3 Sliding F.S 15 Wt of Footing 6.90 kips Passive Pressure 0 kips Lateral Bearing Pressure 0.15 ksf/ft STABILITY CHECK ® 2[] +) (+) n..,.,. Sliding Resistance 1.60965 kips F S= 1.44 Asp A.J. Pass Press+[Conc.Wt+ Axial Force]'Coef.Friction COAD . �4 ri *A. FoofiMv (Duan Post) VI--- raw Uplift F.S= 9.10 AlesJ EaJ TN .1• Footing weight/Uplift due to wind Over Turning: (+)Resisting Moment(-)Overturning Moment A B Moment Due to Axial Load -12.43 -9.40 k-ft Moment Due to Horizontal Load -2 23 2.23 k-ft Applied Moment -150 1.50 k-ft Moment Resisted By Footing Wt. 32 76 32 76 k-ft Moment Resisted By Soil Wt. 0 00 0.00 k-ft M,aygi„sSum= 3276 3649 Mo„ev,n,,,g Sum= -16.16 -9 40 F S= 2.03 (Overturning at Point A Governs) , Minimum Reinforcing Mu(transverse) 188 ft-kips Moment at critical section for flexure(Transverse) p(row) 0 000008 As(req'd) 0020in2 I Mu(longitudinal) 8 57 ft-kips Moment at critical section for flexure(Longitudinal) p(row) 0 000038 As(req'd) 0 023 in2 As(min)-Longitudinal 125 in2 Governs As(min)=0018bh As(min)-Transverse 4.92 in2 Governs USE 3 #5's Longitudinal(T&B) 1.86 int > 1.25 in2 OKI or(4)#4's 8 #5's Transverse(T&B) 4 96 m2 > 4 92 in2 OKI i -Jiff"' RBI SOLAR Job No • T.B.D. 1 Flip Software licensed to Rough Brothers Part Sheet No Rev Job Title SOUTHOLD LANDFILL Ref By Date15-May-15 Chd Client File Interior row std Date/Time 18-May-2015 08 59 • X=0 067 kip Y=-1.140 kip Z=-0.001 kip MX=-0.001 kip-ft /.O\ MY=0.000 kip-ft P. Z=•0229 kip-ft X=0.118kip °-5' ,\ \ Y=-1946 kip �'o\ \ `\ Z=0.001 kip /q MX=0 002 kip-ft �o-� � k�� \'�\ MY=•0 000 kip-ft X=0765 kip \ \ MZ=-0401 kip-ft Y=•0762 kip \ •\ \\� so„, X=0101 kip Z=-0 001 kip l�\ \` Y=-1622 kip MX=-0001 kipft \ b ad • o. Z=0000kip MY=0000 kip-ft �\ \`\' �� MX=0,000 kip-ft p1Z=-0888 klp-ft °u• ti MY=0000kip-t sb o- �� MZ=-0.344 kip-ft X=1 338 kip T �\ -� .\ X=0.090 kip Y=-1286 kip �� \\ mob\ Y=-1A02 kip Z=0,001 kip \ �\ �o, Z=0000 kip MX=0001 kip-ft ° MX=0.000 kip-ft MY=-0 000 kip-ft \- Jb� \ MY=0 000 kip-ft 9AZ=•1554 kip-ft _ \\ ,"s .1 �`� M2=-0,306 kip-ft X=0.088 kip X=1.152 kip � \�\ \ '`,7/ Y=-1366 kip Y=-1053 kip '° Z=0000 kip Z=-0.000 kip �� `\ .'o, MX=0.000 kip-ft MX=•0 000 kip-ft \ \�°, \ MY=0.000 kip-ft MY=-0,000 kip-ft \ `\ MZ=-0.300 kip-ft MZ=-1 338 kip-ft \\� ,'o�� � �\ =0 044 kip P %=1026 kip '�_ \\ `� `„� =0000 kip Y=-0.896 kip '� \ \ b k Z=-0,000 kip \ b. X=0000 kip-Y=0000 kip-ft MX=•0 000 k10-ft \• b`v.' \ Z=-0 150 kip-ft MY=0000 kip-ft \ \a, -,/ MZ=-1.191 klp-ft \ .b- \ s. N X=1 006 kip Y=-0871 kip \`\ `\N. \ °\ Z=-0000 kip N. N \\o MX=-0 000 kip-fl MY=0000 kip-ft \ ,h 9AZ=-1 168 kip-ft \"a Load 76 =0,503 kip =-0A36 kip _-0 000 kip X=-0 000 kip-ft Y=0 000 kip-ft Z=-0 584 kip-ft LC 76 • Print Time/Date 18/05/201515 51 STAAD.Pro V8i(SELECTseries 1)20.07 06.34 Print Run 1 of 1 ATTACHMENT 4 EQUIPMENT TIRE LOADS WHITMAN Allowable Pressure aau 7 psi a1=I lm'w"lOLTIII)/ Pressure on Liner (4*AL)l+Xsoo*d 4.60121 Value Unit Area of Tire at Geomembrane Surface (AL) 460 si Weight of Vehicle (W) 6010 lbs Load Distribution Factor(m) 0.67 Depth of Soil Layer(d) 12 inches Unit Weight of Soil (yso;,) 130 pcf Points of Contact 4 Overload factor(la) 1.3 Impact Factor(I,F) 1.3 X(in.) Y(in.) (Area of Tire Surface @ Ground (AG) 11 8 Truck # 59 2007 Dodge Dakota Specs: 4WD Quad Cab 131" SLT Dimensions Page 1 of 3 NEW CARS USED CARS CI ASSIFIEDS RESEARCH NEWS VIDEO MY SHOWROOM 2015 CHEVROLET SILYEAADO1552 i f= r;:try-, ,I A LEADER AMONG TRUCKS �-- r- `--`" S r /"— 7 THE FIRST PICKUP TO OFFER BUILT-11.14G LTE WI-F1' , �I.. CHEVROLET 'Ln aruntInfo Aim VA ANALC L✓,r'.D.',43ir5LL Home Used Cars Dodge Dakota- 2007- Dimensions• Select Make I • Select Model I w GO 2007 Doege ak.to e Dimensions Interested in purchasing?Browse Used Listings Truck#59 Get email updates REVIEW PHOTOS SPECS SEE CLASSIFIEDS Other Choices -- ---- --- - -1,1241 3122007Toyota Tundra 4WD Quad Cab 131" SLT Dimensions Switch Style _ �--'' »Read Review . »See Photos Quick Specs Dimensions Fuel Economy Performance Safety Features I'---- ` »Compare Warranty Other Specs Weight Information MSRP:$27,535 View Classifieds 2007 Chevrolet Silverado 1500 Gross Axle Wt Rating-Front(lbs) 3600 - »Read Review »See Photos a Compare Gross Combined Wt Rating(lbs) 8500 Curb Weight-Rear(lbs) 1552 2007 GMC Canyon »Read Review Gross Axle Wt Rating-Rear(lbs) 3600 »See Photos ;. Annimma,,0 »Compare Gross Vehicle Weight Rating Cap 6010 (lbs) -- Curb Weight-Front(lbs) 2881 Interior Dimensions Passenger Capacity 5 Second Head Room(in) 38 4 Front Shoulder Room(in) 57 7 Second Hip Room(in) 56 0 Front Head Room(in) 39 9 Second Leg Room(in) 36 4 Front Hip Room(in) 54 9 Front Leg Room(in) 41 9 Second Shoulder Room(in) 57 5 Exterior Dimensions Ground Clearance,Front(in) 7 9 Wheelbase(in) 131 3 Overhang,Rear w/o bumper(in) 48 8 Ground to Top of Frame(in) -TBD- http://www.thecarconnection.com/specifications/dodge dakota 2007 4wd-quad-cab-131-s... 7/23/2015 2007 Dodge Dakota Specs: 4WD Quad Cab 131" SLT Dimensions Page 2 of 3 Height,Overall(in) 68 7 Cab to End of Frame(in) 74 2 Ground Clearance,Rear(in) 8 2 Length,Overall w/o rear bumper 218 8 (in) Front Bumper to Back of Cab(in) 144 6 Frame Width,Rear(in) 74 3 Overhang,Front(in) 38 7 Ground to Top of Load Floor(in) 321 Width,Max w/o mirrors(in) 74 3 Cab to Axle(in) 25 4 Cargo Area Dimensions • Cargo Box Length @ Floor(in) 64 9 Tailgate Width(in) 53.3 Cargo Box Width @ 45 2 Wheelhousings(in) Cargo Box Width @ Top,Rear(in) 59 6 Cargo Volume(ftk) 38 2 Cargo Box(Area)Height(in) 17 6 Cargo Box Width @ Floor(in) 59 6 Ext'd Cab Cargo Volume(ftA') 371 PHOTOS'T 360°VIEW SEE ALL 175 PHOTOS Ads by Google related to Used dodge dakota pickups CG cargurus com For Sale-Dodge Dakota ":>!t14si = (3 5) Thousands of Dodge listings Find great used Dakota deals, • 137,304 people follow CarGurus on Google+ ld jtlautosales dnv. Used Dodge Dakota Buy for$6,990,or Just$150/mo Clean Condition Fun to Drive 504 Middle Country Rd,Selden,NY .?nissanofsmithto. Used Dodge 3 Used Dodge's In Stock Search For Yours Nowl 535 Middle Country Rd,St James,NY New Nissan Inventory Build And Pnce Directions http://www.thecarconnection.com/specifications/dodge_dakota 2007 4wd-quad-cab-131-s... 7/23/2015 2007 Dodge Dakota Specs: 4WD Quad Cab 131" SLT Dimensions Page 3 of 3 tit.eady to buy? Find new and used cars for sale near you Popular Cities Similar Cars For Sale For Sale By Year Used Dodge Dakota Used Dodge Dakota in New York,NY Used Dodge Dakota in Dallas,TX Wade I Go! Used Dodge Dakota in Los Angeles,CA Used Dodge Dakota in San Jose,CA Used Dodge Dakota in Chicago,IL Used Dodge Dakota in Jacksonville,FL Used Dodge Dakota in Houston,TX Used Dodge Dakota in Indianapolis,IN Used Dodge Dakota in Philadelphia,PA Used Dodge Dakota in San Francisco,CA Used Dodge Dakota in Phoenix,AZ Used Dodge Dakota in Austin,TX Used Dodge Dakota in San Antonio,TX Used Dodge Dakota in Columbus,OH Used Dodge Dakota in San Diego,CA Used Dodge Dakota in Fort Worth,TX Car NEW CARS USED CARS LATEST REVIEWS FEATURED REVIEWS COMPARE CARS CHEAP CARS 2016 Kia Optima ��s i2016 Chevrolet 2016 BMW X5 NEWS CARS FOR SALE Suburban ADVICE 1 RUCKS FOR SALE2015 Ford Escape ;_^`"_ 2016 Dodge Viper -- 2016 Toyota Avalon W-71 i '� SRT r euvarsii ABOUT US CONTACT US .,, 2016 Nissan GT-R i .•• 2015 Mazda tiri 2015 Toyota Camry BLOG PRIVACY POLICY - - a ` MAZDA5 t �.....o.i RSS FEED LEGALe► 2015 Ford Edge ;.2015 Mercedes- 12015 Honda Accord Benz M Class Sedan HOW WE RATE REPRINTS CARS4 2015 Chrysler 200 BUY AU1 O LEADS ��-'r--7 Like Us on Follow us on Our YouTube Facebook Twitter Channel Add Us on Google+ ©2015 The Car Connection All Rights Reserved The Car Connection is published by High Gear Media Stock photography by izmo,Inc Read Our Cookie Policy http://www.thecarconnection.com/specifications/dodge dakota 2007 4wd-quad-cab-131-s... 7/23/2015 • r..4 '4..- 4; ', ♦ - � 1f +w ''_, X11 , i• n• - • .' :{' �.. .w„ ;R *, 'x,#55. 4 0ellid�o�r : . . Y row sawn Nora ,r6 41 II rmaw y ! nee ' -h 771- 1st ., __,_ • _, _ 1.1 1 / • "" .., "ter ..`"" -. + ,.. ".„....0.00-07,11104440„ f amiliki r , ,„4-0;._ , .•'n'I- 2 3 a r 7 9 • $1011 k F • Y ' ,•P �_; fit.n• _# 4'.7.5.:.:.� 'va� i.'i y t.p y .#�a\ W>y��..�[ S, fir, • i .. ,A •. . * . - G t.....• , of.`4 � `- "P'A'N .. i . -'.'•�RJf, • .y • 'A .0-'4 It, s - 's¢-y 4 ',s ,� By. i'5.+. . _'It - 3�. "'`_„►M'i . { .. r� ��: -I- '��. ° ••••0.---A '4 2,=,...,,r; i. . # _ i ,7ti' -•`.yi ,,, 'a. _7+ ^a arr 1� � vP� .- r 1�• • ... 5+. .,,,4s,,,,*; ft- s4*,-; x,afi €' 4, . • 1-F`‘ S - . -"tr .t. * M !--#.:*:-'.4 ls4.46.:, 'a � ,1 y j`Vt4041:'"' ` . ii1t4,A.-11-*" ..14.;:+i. 3; '-..."'11':x .. .� .45 „ Ty ,. c . ,.,4t- if♦ d .. ` { .... ,• ..I , .,07 -',274.-7":: r " ` t ; .141 ..1 a. ...4 r'. 4,- l`. slit A.v . �* .- ii> t f Y*= .., r . **611,11110144106.,,- ' 1 . . smi,,,ipittaio • • , .i . ,. .. •• • 4" ''-4„Jr. ,•,--',..?' - .. .4004'' , . . . .1 r ,.... . ., . . .. 4,... . .... . , . , • .. .,e*--...04411.'"' ....' '' ••;'if' ' ' ' . - ,' .,'.4....._ . . . ' 4.4 ... . - ..4 41160044.r -.I _.. ''.: !'' .t.'., •- •-. '' • ,A e - S .'' , ',...k, ,..$. '' i• "•-.; ,•t- •:''''''',"- -"..---.. ' ,- -.,-- •-• ' ...o ' ;P ‘k - 4-.--, ...... • ' : - ,......,, ?.,,,,I. ,....- ,.,.•..-i41:1101h. it .: 4 .A : , ' -. -.. - -...... -0... .,_.„ 463 . 4 5 . . . . . . . 6 '7'./-4-.`,4' ,- •.12}c-rxi,„....- -.ob.:. ... a , 5-4 7 1) ,........,0417.--,,,--„,#;,.-.4‘.,: ..::,..;-•--i,- ....,- . . , , . . .•-..,---,-,,,.- .-•_ .,-- y,-.-: -- . .• •,.. . , S _ • - . - - , f„.a...--,,;,.<*e.: .,-;.,'A• k-- , 4,,-r-. •i.. .;" $r„,"..- '.-,.r• --, . -',..?:--.;",' '.-'* ....f; - _',„'. •' , ; ,P...1.4.2.,,,t". ',-,..s.$.-,-'' ^-•1 :'.. _ -".• , ' - - . ' .. . ' "'' ...r-",1",• ,,:,'". . ..... • 4_ ,. .0 k..••'' '40' I .„ , , „ ,. , ! • ' ' . . ,. ' a"' i.-.. ' " , ..... , • - , , ; 0 . . r • . . ' •• • . . , . ... .., • . , i . . ••••• ' * • - . ' •.... ' . . .• . . *„. . 1 '• . .4 - • '., , - .:1 :' " - ' ','!-.1,',. -a & 04 ,..,• ,.. .. •"`... • -- - ".•' ' """ a ' . le" r -. ' -• • rft -.-Ar 4e, .' -44"..*Jr16 ' ,0* ' - t ."4.- , $•..• -I ,sk ' • i,'!...4 , .„,,t ie - ^"' . t'.'4, 5.; "7.4.,' 4 '7-4r '--' r . __,.... . 1 ...-,. .. _ .. . 4 .,, _ , 0 '.". 4 - , ., ; ".::!! sof,;;e . _ ,,- 0--, . :.` ' .?.--,..*"... • , ,0 4'r. , , it-. .,14:94' ' '''...1.j St - ..t ' ,- 4- ;;. '1 , .. ,MP ." .. 4 .. 'PI , .., ‘.'''.,:. n ' -,•-„. .. - . i ' . . X , Allowable Pressure aaiI 7 psi aL=1 lm'w''oL"11F)/ Pressure on Liner (4*AL)l+Xsoii*d 4.25698 Value Unit Area of Tire at Geomembrane Surface (AL) 484 si Weight of Vehicle (W) 5735 lbs Load Distribution Factor(m) 0.67 Depth of Soil Layer(d) 12 inches Unit Weight of Soil('soil) 130 pcf Points of Contact 4 Overload factor(Ion) 1.3 Impact Factor(I,F) 1.3 X(in.) Y(in.) (Area of Tire Surface @ Ground (AG) 10 10 Truck #70 2008 Ford Super Duty F250 F350 Technical Specifications Page 6 of 10 Truck 70 Rear - - 68.1 68.1 68.1 68.1 68 68 68 68 Fuel capacity 30.5 gallons with 141.8,156.2 wheelbase,38.0 gallons with 137,158 and 172.4 wheelbase (gal) Turning diameter,curb- 47.7 46.1 49.1 47.5 54.1 52.36 53.5 51.8 58.5 56.5 to-curb(ft) All Dimensions are In Inches unless otherwise noted. F250/350/450 Weight and Towing Cab Regular Cab SuperCab Crew Cab Cargo Box 8ft 6.75ft 8ft 6.75ft 8ft Drive 4x2 4x4 4x2 4x4 4x2 4x4 4x2 4x4 4x2 4x4 Base curb weight F250 SRW 5633 6092 5887 6346 5991 6458 6051 6523 6152 6618 F350 SRW 5735 6194 5989 6448 6093 6560 6153 6625 6254 6720 F350 DRW 6083 6542 - - 6441 6908 6625 7128 6742 7227 F450 DRW - - - - - - - - 8290 8687 Max payload capacity 1 F250 SRW 3150 2890 3110 2840 3210 2910 3160 2850 3240 2950 F350 SRW 4350 4280 4210 4130 4310 4200 4260 4150 4340 4250 F350 DRW 5700 5430 - - 5760 5450 5700 5400 5790 5300 F450 DRW - - - - - - - - 6120 5720 Max GVWR • F250 SRW 9400 9600 9600 9800 9800 10,000 9800 10,00010,000 10,000 F350 SRW 10,700 11,100 10,80011,20011,00011,400 11,00011,40011,200 11,500 F350 DRW 12,400 12,600 - - 12,80013000 12,80013,00013,000 13,000 F450 DRW - - - - - - - - 14500 14500 Maximum GCWR 16,000 http://www.fordf150.net/2008/2008-ford-f250-superduty-specifications.php 7/24/2015 • .. .. . . _ -...• - ---_—,.. la- ,116.4011011111111411111111.0.\c---zs ... .. ..:,411111.10.01411114.1.. • ,,`1""---- ,_ _. _ _. _ . . . '404••••••••• in. • • : ' .Itt Nit Ali .,i. '1';‘. . . . - - -• " - - ' 41.1. 4-_,4 a --'',Ph VP ,.. .. _„:...,.,..- ve ,':.. ittis.;—.:•,.. , 'i, 1 -....... — v -• t, .., *It: F,,: ...-1,4 ,. ' .. 1...4,...% ": '.4:, ' e• 94 ....„ .../__ . ,,,. 1" &,:::. : • 410 . .1 4..f•:, V et'' ',1 .._,4,944,,p .r • .4d...f.. 0 "!... 7.1- •4 "4411V.. .1, . Ar , , .`t.., .• 44.41p, .41,....•• , .1 •114••• • ';'•• '' 4../0444 /OP. '4 • •../' ''.3". . • •-'*'''',. . "' ..; ' I jr- - _ _.... l'4!_6; .:'•;..k.- .• • ' ••r.J4,. ' , rl,;•• '.; ,..1. '.4. ir: 4!, ''. .,' / •-• , • • • .. • • ' I hi. tAt... . , - - - . ;f.t4.----,' • -. . •...,,4t,•...r- ••„ ti•....-! - _ .... - : -..,••• ... /..t. ' • 40100;* : as• • .t •"'',6 .11 ._ . . 4 -... 44.. ..... . .... ... .. Iti ,. . . . ., V I ,.....$ ..4,-,...fir/A..• --- ..,..:','*:1, '. f/r•:,.iik:,,;:r -- 4.111101° 4 a . --, '•. - AI On Or"t• .• t:. ' .4ag IIS . _E• / e..... .tt'W..Ar .... ,._. . tfr , .. .:- NI ../L iii• .. - •/. ___ w'''`''''`'''-'•--.444-• •••••-./...-:••/1111 '* I • ••--- . ., I . 4 I.. I. ' ---' ;•fl • • i . ...,_,, - ! • 1111TIWIIIN t , _ IL, ' 1 - .. • . , '.41: •-:-- --7, .I I • . A••• 44 ..- . 110, . . . . _ Mr ••••ft` , \-1 lq),,,,,V1 4 i il • '' \. l -• • ... • 70 , 0 . • & . i ...- . t . . ., ' ' ' ... •N. 0 '31 • Il • • C',.. • i . 4 v 7. IP • _ glik V 'tkf,‘ J 6. 0Y. l 111111114 - e41.# y I - • t.. e- ,,, ts� ' .".--' . ` L .P •• ,Ari ♦ .4,-,-.0s_...'.•- - i., l+i r• ••, - r -.r r a .,. . , . . }�(7� ♦ � - L' .. yam. �r 'I� �g ♦ t C..�.d' .4'✓.74K��T _../4w�' - Y' ♦ � '.i...,:iaeaA4. �,:����s _I,.r„.,440. , Its *:�.iNr. 4.,..11•44.1,.. lzv'� f ,ti., - ,4,,_ • 4011111111111111.111111.1111111 • 41 ?• 'R. 1. iF`:. • 1 r v y1•• ° • 4 ;AG • ,• kti r h e 40 .. tom- , ' �_ ••J _. ; .. t ,. i - ' P-r.'- "♦'kms, t-� „ • • t' ; 1 '44 i. ••♦- •1.. 1. ,ft .• ` ►J` .;;; !'� '•y-'• f , Allowable Pressure gait 7 psi aL=1 m vv•1o1'1IF)/ Pressure on Liner (4*AL)]+yso,i*d 2.35399 Value Unit Area of Tire at Geomembrane Surface (AL) 387 si Weight of Vehicle (W) 1984 lbs Load Distribution Factor(m) 0.67 Depth of Soil Layer(d) 12 inches Unit Weight of Soil (yso;i) 130 pcf Points of Contact 4 Overload factor(loL) 1.3 Impact Factor(I,F) 1.3 X(in.) Y(in.) (Area of Tire Surface @ Ground (AG) 6 9.5 Hertz Kubota . , .T.;-•' , , RTV900 .. . . ' . : -:-.,. ,, •.- :: ::•, :..-- . , . :., - , ..,, - ,?-r--•,,- .•,,',- - ,; , , .., - , '•.'f--- 1- - i I ' -. ', -. •!----,' -..-------•••-.I.) i- ls\., 9 Specifications _ Model ' RTV900 General Purpose,L I RTV9,00 Workslte . RTV900 Utility _ „94-."69" ..---0.49ge- °417197-Liiiiag9:- i lir-Tyae , ',I - 3:cilinders,tt-cidie,diesT3i;Oi-h7 ngine i t.Displacement cu in(cc) 1 - ir Horsepower HP(kW)/rpm ', 21.6(161)@3200 [_,Puertaiik capatity__ _ - , li.kgais(/) Transmission ii - Variable hydro tranarnissien(yHT) - - . FMex.Travelingspeed_„_, V. mpt(km/h). sf__,.. _ ,1 - . „ ; Wheels,drive system --'7"- , 4,4W 6 w/2W_U.selection- ' _.-:_.--,..--,-;-7,1-_,-..._=-.-.-z.-,.........--,.__,-,..,...-- .,---.-;,-.4,---....:.---,,,,,,,...-:-.,-.._ __-_,_...,-......AL-_-_-_-_,-_-,--_,_,_:-:-._:..---,..--.,-_-..-_-.-r.„-_,..--_-..t.-_,..-_-_-: : Differential lack - - 'i . Standard;loot operated_with:mechanical holder 1 ,eear salectio-n, '-ft. , il-MedLlo rangegerward;neutral,reverse . ,r Front/Rear, 1 Wet-disc brakes - - -r i i''Parking brake, , . ' Rear wheel;hand lever, . liSteering __ -,,...,_ ___.:„.._ _ F!ydrpsfatic ;Suspenion'Li:Front/Rear_..,• ]__•__,_________.__:__....c Independent; ic-P-herson strulltyps7Semi-indepenTentD:abion.aide w/laafsp'rings and shock abso-rbers___, , ' .'L Length .in._(min) ,__-.i 117.7(299-0) 7 Fr"--- r iie.3-(3o3oF -' ! ' !tiAildth . in,(mm) _:{ ip-eight,Overall irr:.(mm),_,L - . - ,794(2015) , , " -,:79.1(2010)[79.3(2015)with Turf Rest( Front tread centers -in (mm) .. 45.3(1150),[46.5.(1,180).with Turf Tires] _ i Di mansionsi tiiear iteari---Cenieg:----_ Tr,i-Lfrpitiri Lr_17,1----____-'-' -:"'-'--_-1_t,__---_---_,-:i6',-5184r4I( t-fiTtiff7z:: '-'-'- '7--s-Z-1-z-.. ="._1 ,__ ii_Wheelbasein.,(nnm)_ i; - __ 774(1965) - , ,,,,A-7,.;A_7.-_,,-1,---.A..--,----._.7.-.;-_-_--..,:-_- -:.---,-_,,, --_t__ • clearanc▪e_fronUrearadet int,(mml 'L__ 8:3,(210)4 7.5(190): --_-,-_-_ ..,-.1, __.7-_-_,--.._-_,-._-_-_,__,r.:-....-:-..7.--7.-_-_-_-_,-,-_,:.--__,...,-.-_,:_--____ - t ti Turning diameter - ft.(m), 'L - - 25.6-(7.8)_ ,_-=-..-_-_-..-_,..,-_-___, 1,145.,_rolling,weight(Towlng capacityl: _lbs.(kg) __l ....1_ .,::,....1os1(50). - _ ,▪__ [Payloa-d capacity - ---- --'ibs.-(kg) !I ------ —1651a0f,- -77—-7 7-7-----' --- —1-6761711F:- , 1,Welifit " ItsV(9) -__L__ 1863(846-)1_ _ :i,_ 191, 870 - ;Li 1961(865T 0.9,114_1k021:9951-905JiikTilris,firest,' :r Width x Length,x Depth - in:(rnm) 1, '., 8-2(-13.20)7X-46.7-6180):x.11.4-(290Y „,Volume _ cuiff:_(e)__,L ' ii Cargo bed • heig:;- (---u'rliOad-e'd) 'Iri-.1(mii_1 -2-------------' -- ----- '---- 31.611i3-07 ---'-7-------- i _j[Cgrgp bedload , lbs (kg) ji , - -- , , 11-02(500)j LJJY ! operator ear db.(A) r -, - 87 @ Max.engina speed w/,no load. -69‘Mail.enginespeed w/noload; 1 _11 Front- , 25xJ0-12 Knobtii; PL),: 25X10-12 HDWS;6PLY 25x30 ,AfV;.6PLY__it 25x10-12 HpWS;6PLY_1 I i . ‘i 255ii:i2i5W§,6FEY a__ 2ixi0--12 ATV,636121 110-121-IDWS:_sPLY _ti 25,i12-12 Tul,4PLY' I il., -._,.._... :,_ 41- 4.76-12furf76PITY --T-------17- --.l.--r ------- ' It.L--— 1"--- -'--1 ,Tires Rear,, ',r_ 25)00-12 knobby:613Tii: 1- 25x10-12HDWS 6PLY' ii, 25x1t-12 ATV 60L-Y iii_---25id ., 25xT0-12 HDWS,6Pli i I -25x1-0--12 ATVAPLY '' 25x10-12 HDWS,6PLY r- 25x12-12 Turf,4PLY I . ;I Ji 25x10L12 Turf,6PLY 1-- t_Front guard __=,.....„.4.1_,__,.._.,,..„7_, -_,i.._ _,_ _,., "_§ildii qtd: ,,...,„LSyl. _:__-: iHyslrauqc beilIft - _,L,1,__ - T-rjr,:=- , -§G. , .. ''Std -,,, • "dtd. f-I4-d-----I'6Iii VT'--1'.--'-'” -7-'7.-----:-7-----r.-"---- '''-''---"-r----'.-:"--- _ „ _____,,,._._ -_,_-:-_-__t.-_-_,_-_, -_,..-.7-74;--,=.--7.-7-7.,-----7711,17.17. y rau Ic , I Ly.a ve ___„ ____ Std. _ :j :,_ r_SizLee-ciomafer ' .. , : - 't _t, - ITTTSte . '' Std: - - The company reserves the nght to change the above specifications without notice This brochure is for descnptive purposes only.Please contact your local Kubota dealer for warranty and safety informabon. The values in"Ground clearance"and'Welghr are those of the machine equipped with the tires in the table above Some RTVs in this brochure are shown with optional accessories.For off-highway use only. t r fir . ,le . H _ ,-,..1, _, e _ r� " e!•CF "I, ,b «. 0,4'; • • { ": AS r K ' ;iia T 1n . y kM ;' J s 1 A. 'tt t' t s t t' 1 1 1 i ' • i . ,, t 44 '{'' ;Y ,mac 41114 y� - -rii .0,110c 4 i.: , _ 4400000,, ,o• . 11(e" 1 400001110, • ,....... ,. . .... ir - Not .• . IF S 9 4 111 1? \\\ 4 61111 tt 3 I/ I I II ,,,, ,... . - .7 jrf j • S Ill ,y W._. :- M' ' T190 COMPACT TRACK LOADER SPECIFICATIONS (DIMENSIONS N --oil o' ana------ 'of na1....„ J K ��Ly If: o Ip. ............ li o ae 9 r ,I (j•�. �OC jC twit I�'�. �( j�a• l B r �7►!r` i =ie o ..--9 /0 -...'44 .4.4:_----,....., / -.::::•-:,‘,-- D E —4 F b. 4 P ►. .1 , G .� Q A) Operating Height 152.1 (3862 mm) 0) Turning Radius B) Height with Operator Cab 76.3" (1938 mm) with 68 in. Bucket 78.8" (2001 mm) C) Angle of Departure 30° with 74 in. Bucket 80.2" (2037 mm) D) Ground Clearance 8.1" (205 mm) Rear Clearance of Machine..62.2" (1579 mm) E) Ground Contact Length 55.2" (1401 mm) Q) Width (over tracks) F) Length without Attachment 101.9" (2588 mm) 12.6 in.tracks 66.0" (1676 mm) G) Length with Standard Bucket 130.3" (3309 mm) 15.8 in.tracks 73.9" (1877 mm) H) Rollback @ Carry Position 25° P) Track Tread I) Dump Height with Standard Bucket 91.0" (2310 mm) 12.6 in. tracks 53.4" (1356 mm) J) Dump Reach @ Maximum Height 30.9" (785 mm) 15.8 in.tracks 53.4" (1356 mm) K) Height to Bucket Hinge Pin 118.2" (3002 mm) N) Width over Bucket L) Dump Angle @ Maximum Height 42° 68 in. Bucket 68.0" (1727 mm) M) Rollback Fully Raised 74 in. Bucket 74.0" (1880 mm) @ Maximum Height 95° Carry Position 6.6" (167 mm) PERFORMANCE Rated Operating Capacity(ISO 14397-no more than 35%of Tipping Load) 1900 lbs. (862 kg) 'Rated operating capacity (ROC) @ 35%of Tipping Load complies with ISO 14397-1 and SAE J 818 for crawler loaders. Operating Capacity(ISO 14397-no more than 50%of Tipping Load) 3426 lbs. (1554 kg) Tipping Load(ISO 14397-1) 6851 lbs. (3108 kg) Operating Weight(SAE) 7775 lbs. (3527 kg) Operating Weight(wide track option) 7934 lbs. (3599 kg) Travel Speed 7.1 mph (11,4 km/hr) Lift Breakout Force (SAE) 4700 lbs. (2132 kg) Tilt Breakout Force (SAE) 4450 lbs. (2018 kg) Push Force 4700 ft-lbs. (2132 kg) Bobcat T190 Compact Track Loader Specifications November 11, 2008 ENGINE/ELECTRICAL Make/Model Kubota/V2607-DI-TE3B-BC-1 Fuel/Cooling Diesel/Liquid Horsepower(SAE Gross) 66 HP (49,2 kW)@ 2700 RPM Horsepower(SAE Net) 61 HP (45,5 kW)@ 2700 RPM Maximum Governed RPM 2700 RPM Torque(SAE Gross) 161.0 ft—lbs. (218 Nm) @ 1475 RPM Torque(SAE Net) 155.6 ft—lbs. (211 Nm)@ 1475 RPM Number of Cylinders 4 Displacement 158.7 cu. in. (2,6 L) Bore/Stroke 3.43/4.33 in. (87,1 / 102,4 mm) Fuel Consumption 3.4 gph(12,9Uh) Estimated fuel consumption is based on testing by Bobcat Company in high duty cycle digging applications. Lubrication Pressure System with Filter Crankcase Ventilation Open Air Cleaner Dry replaceable cartridge with safety element Ignition Diesel-Compression Engine Coolant Propylene glycol/water mix(53%-47%)with freeze protection to-34°F(-37°C) Starting Aid Glow plugs Alternator Belt driven;90 amps;Ventilated Battery 12 volt;600 cold cranking amps @ 0°F(-18°C);115 minute reserve capacity Starter 12 volt, gear reduction type;3.62 HP (2,7 kW) 'HYDRAULIC_SYSTEM;.,. Pump Type Engine Driven,gear type Pump Capacity Standard 16.9 GPM (64,0 L/min) @ 3135 RPM High Flow Option 26.4 GPM (99,9 L/min) @ 3135 RPM System Relief @ Quick Couplers 3250-3350 PSI (224-231 Bar) Hydraulic Filter Full flow replaceable, Number 3 micron synthetic media element Hydraulic Cylinders Double-acting;tilt cylinders have cushioning feature on dump and rollback Control Valve 3-Spool, open center type with float detent on lift and electrically controlled auxiliary spool Fluid Type Bobcat Hydraulic/Hydrostatic Fluid(P/N 6563328) Motor oil is not an acceptable alternative fluid Bore Diameter Lift Cylinder(2) 2.50 in. (63,5 mm) Tilt Cylinder(2) 2.75 in. (69,8 mm) Rod Diameter Lift Cylinder(2) 1.50 in. (38,1 mm) Tilt Cylinder(2) 1.375 in. (34,9 mm) Stroke Lift Cylinder(2) 23.67 in. (601,2 mm) Tilt Cylinder(2) 13.19 in. (335,0 mm) Hydraulic Function Times Raise Lift Arms 3.7 Seconds Bucket Dump 2.4 Seconds Lower Lift Arms 2.4 Seconds Bucket Rollback 1.9 Seconds Bobcat T190 Compact Track Loader Specifications NOvember 11, 2008 DRIVE SYSTEM Main Drive Fully hydrostatic, rubber track drive Transmission Infinitely variable tandem hydrostatic piston pumps, driving two fully reversing hydrostatic motors Tracks 12.6 in.width (320 mm) or optional 15.8 in.width (400 mm) Tension-grease cylinder and spring rollers—triple flange GROUND PRESSURE CAPACmEs' 12.6 in. 4.9 PSI (33,7 kPa) Fuel Tank 28 gals. (106 L) 15.8 in. 4.1 PSI (28,3 kPa) Cooling System 11 qts. (10,4 L) Engine Oil with Filter 9.5 qts. (9 L) Hydraulic/Hydrostatic Reservoir... 4.8 gals. (18,2 L) Hydraulic/Hydrostatic System 8.5 gals. (32,2 L) Roller& Idlers 100 cc each :CONTROLS Vehicle Steering Direction and speed controlled by two hand levers Loader Hydraulics Lift&Tilt Controlled by separate foot pedals or optional Advanced Control System(ACS) or optional Selectable Joystick Control System(SJC) Front Auxiliary(Std.) Controlled by electrical switch on Right Hand steering lever Rear Auxiliary(Opt.) Controlled by electrical switch on Left Hand steering lever Auxiliary Pressure Release Pressure is relieved through the coupler block,push in and hold for five seconds Engine Hand lever throttle;key-type starter switch and shutdown Starting Aid Glow Plugs—automatically activated by Standard or Deluxe Instrument Panel Service Brake Two independent hydrostatic systems controlled by two hand operated steering levers Secondary Brake One of the hydrostatic transmissions Parking Brake Finger-operated rocker switch on center control panel with spring applied,pressure release multi disk brake SERVICEABILITY Access is available to the following through the rear door/tailgate and rear screen Air cleaner Alternator Battery Cooling system(radiator and hydraulic oil cooler)for cleaning Engine oil and fuel filters Engine oil drain and dipstick Fuel fill Hydraulic oil fill Starter Bobtach pivots have replaceable wear bushings Easy access to all lift arm grease points Rod end of the tilt cylinder has a replaceable bushing Tailgate has an optional lock for vandal proofing Tailgate is equipped with door stop to hold door open while servicing Tip-up operator cab gives access to certain hydraulic system components Bobcat T190 Compact Track Loader Specifications November 11, 2008 INSTRUMENTATION I The following loader functions are monitored by a combination of gauges and warning lights in the operator's line of sight.The system alerts the operator of monitored loader malfunctions by way of an audible alarm and visual warning lights. Standard Instrument Panel Gauges Warning Lights Engine Coolant Temperature Advanced Control System(ACS) Fuel Engine Air Filter -— Hourmeter Engine Coolant Temperature Engine Oil Pressure - Indicators Fuel Level Attachment Control Device General Warning BICS Functions Hydraulic Filter Glow Plugs Hydraulic Oil Temperature Hydrostatic Charge Pressure Seat Belt System Voltage Deluxe Instrument Panel (Option) Same gauges,warning lights and other features as Standard Instrument Panel plus: Bar-type gauges: Engine Oil Pressure,System Voltage, Hydrostatic Charge Pressure and Hydraulic Oil Temperature Additional features: Keyless Start with password capability, Digital Clock,Job Clock, Attachments Information,Digital Tachometer,High Flow Lockouts, Multi-Language Display,Help Screens,Diagnostic Capability and Engine/Hydraulic Systems Shutdown Function ATTACHMENTS Angle Broom* Flail Cutter Snow V-Blade* Vibratory Roller Auger Grader* Snowblower* Wheel Saw* Backhoe Grapple, Farm/Utility Sod Layer Whisker Broom Box Blade Grapple, Industrial Soil Conditioner* Brush Saw Hydraulic Breaker Spreader Brushcat Rotary Cutter Landplane Stump Grinder* Buckets Landscape Rake Sweeper Chipper* Mower Three-Point Hitch Combination Bucket Pallet Fork-Standard Tiller Concrete Mixer* Pallet Fork-Hydraulic Tree Spade Digger Planer* Trench Compactor Dozer Blade* Scarifier Trencher Drop Hammer Scraper Utility Forks Dumping Hopper Snow Blade Utility Frame For specific attachment model availability see Bobcat Product Price List.*Requires Attachment control Kit Bobcat T190 Compact Track Loader Specifications NOvember 11, 2008 FACTORY QP.TIONS Advanced Control System (ACS) Engine Block Heater 16 inch rubber tracks Selectable Joystick Control (SJC) High Flow Auxiliary Hydraulics Back-up Alarm and Horn Hydraulic Bucket Positioning i DEALER ACCESSORIES Attachment Control Kit Four-point Lift Kit Rear Auxiliary Hydraulics Back-up Alarm Four-Way Flasher Light Kit Ride Control Cab Accessory Harness Horn Rotating Beacon Light Cab Enclosure Hydraulic Bucket Positioning Side Windows Kit Catalytic Exhaust Purifier Locking Fuel Cap Single-point Lift Kit Fire Extinguisher Kit Power Bob-Tach Special Applications Kit FOPS Kit-Level II** Radio Strobe Light Kit Tailgate Lock Kit ;:AC%HEATED'CAB'PACKAGES A91 Option Package A71 Option Package A51 Option Package Cab Enclosure with Cab Enclosure with Cab Enclosure with Heat/Air Conditioning Heat/Air Conditioning Heat/Air Conditioning High Flow Hydraulics Power Bobtach Power Bobtach Power Bobtach Sound Reduction Cab Accessory Harness Sound Reduction Deluxe Instrumentation Panel Hydraulic Bucket Positioning Cab Accessory Harness Deluxe Instrumentation Panel Attachment Control Kit A31 Option Package Engine Block Heater Cab Enclosure with Cab Accessory Harness Heat/Air Conditioning Horn Cab Accessory Harness Backup Alarm - Attachment Control Kit HEATED'CAB PACKAGES; H71 Option Package H51 Option Package H31 Option Package Cab Enclosure with Heat Cab Enclosure with Heat Cab Enclosure with Heat Power Bobtach Power Bobtach Cab Accessory Harness Sound Reduction Cab Accessory Harness Deluxe Instrumentation Panel Cab Accessory Harness Attachment Control Kit OPEN CAB PACKAGES 071 Option Package 051 Option Package Power Bobtach Cab Accessory Harness Deluxe Instrumentation Panel Deluxe Instrumentation Panel Cab Accessory Harness Attachment Control Kit Bobcat T190 Compact Track Loader Specifications November 11, 2008 SAFE7v Bobcat Interlock Control System (BICS) (Std.) Requires the operator to be seated in the loader with the seatbar in place and the engine running. After the operator presses the"Press to Operate Loader"button,the loader's hydraulic lift and tilt functions and traction drive system can be operated. Lift Arm Bypass Control (Std.) Used to lower the lift arms in the event that the lift arms cannot be lowered during normal operating conditions Seat Belt (Std.) Should always be worn when operating the loader Seat Bar(Std.) Secondary operator restraint,also serves as an arm rest Operator Cab(Std.) An enclosable operator cab with side screens with a minimal inside cab width of 33" (838 mm)as standard equipment. Meets SAEJ1040 and ISO 3471 for Roll Over Protective Structure (ROPS) and SAE J1043 and ISO 3449 Level I for Falling Object Protective Structure (FOPS). Level II option is available. Level I—Acceptance is intended for protection from falling bricks, small concrete blocks and hand tools encountered in operations such as highway maintenance, landscaping and other construction site services. Level ll—Acceptance is intended for protection from falling trees or rocks for machines involved in site clearing, overhead demolition or forestry. Lift Arm Support(Std.) Use for servicing when lift arms are raised Parking Brake(Std.) Always set brake when leaving loader Grab Handles (Std.) Should always be used when entering/exiting loader Safety Tread(Std.) Slip resistant tread on lift arms and main frame to be used when entering/exiting loader Attachment Steps (Std.) Should always be used when entering/exiting loader Rear Window(Std.) For emergency exit Front&Rear Working Lights (Std.) Use for indoor and low light operation Backup Alarm (Opt.) For use in jobs with low visibility Lift Kits (Opt.) Lift kits are available so loader may be lifted into remote areas Special Applications Kit (Opt.) Restricts objects and material from entering cab openings Operator's Handbook(Std.) Weather resistant operator handbook written in English will be attached to inside of cab,providing operational instructions and warnings by decals with pictorials and international symbols plus some messages in four basic languages: English, French, German and Spanish. TRAINING RESOURCES These optional videotapes and training courses are available through Bobcat Parts Bobcat Skid-Steer Loader Operator Training Course 4-hour course provides video,classroom and hands-on training(also available in Spanish) Bobcat Skid-Steer Loader Service Safety Training Course 2-hour course provides video,classroom and hands-on training Bobcat Skid-Steer Loader Safety Video Short and to-the-point video provides basic safety instructions for the Skid-Steer Loader • • I j7 2r 2 t 21 68 I 69' 70 I 1711 1 ,1721 io I '73' "7.4" "75" ' - , . aPr. . _ • • - • tir •... • ,.26 • • • 1 . • .T—_ _.. , g 5 ea 'ti ptiti�t 1ti ,11t at67e etat ' 1'h otofS 3e . etit 4 : 4 9 +ty tiXs y 4aey a3e' z a 7a o Aa z a a 2 Oa 2 a 11 124 413 144 2 154 ' 4; 4 �► , a ., , 4 , 4 , � 4 . 0 ai • . •p _ __ rq waw .- „' e ' ill- ' . i j•�c